BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM
TERMÉSZETTUDOMÁNYI KAR

Szerkesztette:
Farkas Miklós

MATEMATIKA
VII. kötet

KOMPLEX FÜGGVÉNYEK

Írta:
Dux Erik

Műegyetemi Kiadó, 2010
(Hetedik utánnyomás)

egyetemi jegyzet
oktatási célra

Azonosító: 040759

A Budapesti Műszaki és Gazdaságtudományi Egyetem
Természettudományi Karának
megrendelése alapján kiadja a
Műegyetemi Kiadó
www.kiado.bme.hu

Felelős vezető: Wintermantel Zsolt
Terjedelm: 6,7(A/5) ív
Nyomdai munkálk
MŰEGYE TEMI NYOM DA
Munkaszám: 7155/2010
AZ OLVASÓHOZ

Bz a jegyzet a Matematika c. jegyzetsorozat VII. kötete. A sorozat következő kötetekből áll:

I. kötet. A matematika alapjai
II. kötet. Egyváltozós valós függvények
III. kötet. Lineáris algebra
IV. kötet. Végtelen sorok
V. kötet. Többváltozós valós függvények
VI. kötet. Differenciálgeometria és vektoranalízis
VII. kötet. Komplex függvények
VIII. kötet. Differenciálegyenletek

A sorozat a szigorlati Matematika anyagot tartalmazza. A jegyzet azokhoz a gépészmérnök hallgatókhoz szól, akik a Matematika c. tárgy előadásait és gyakorlatait látogatják. Ezért nem tartalmaz hosszadalmas magyarázatokat, bevezető és illusztratív példákat stb., hanem "csepán" a tulajdonképpen anyagot lehetőség szerint teljességre és maximális tömörsegére törekedve. (A levelező hallgatók számára külön utmutató csatlakozik a sorozathoz.) A sorozatot a Matematika Példaátár kötetel egészítik ki, amelyekben az olvasó nagy száma kidolgozott és kidolgozatlan példát és feladatot talál.

A kötet fejezetekre, a fejezetek pontokra vannak osztva, de a pontok számozása a fejezetektől függetlenül, folyamatosan történt. Az egyes pontokon belül külön-külön számozzuk a definíciókat, tételeket (segédtételeket, következményeket), példákat, formulákat, ill. ábrákat. A példák részben a nehéz fogalmakat, tételeket világítják meg, részben "ellenpéldák" és nagyrészt az elméleti anyag szerves részét képezik. A hivatkozások egy köteten belül az Idézett definició, tételek stb. számának megadásával, más köteten belül, ezen kívül a hivatkozott kötet számának megadásával történik (mindkét esetben a fejezet megadása nélkül). Tehát pl. az I. Kötetben a "1. 13. 2 Tétel" hivatkozás az I. Kötet 13. pont 2. tételét jelenti; a II. Kötetben ugyanerre a tételeire ugy hivatkozunk: "I. I. Kötet, 13.2 Tétel". A bizonyítások végét pont és felkiáltójel jelzi: .1

- 3 -
Az irodalomjegyzék elsősorban az anyag iránt mélyebben érdeklődő olvasónak ajánlott művek és nem az eredmények eredeti forrásainak címelt tartalmazza. Az irodalomjegyzékben feleorolt művekre szögletes zárójel- be tett számokkal hivatkozunk.

Bp. 1975. március

A szerkesztő
<table>
<thead>
<tr>
<th>TARTALOMJEGYZÉK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Előfejezet.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Második fejezet.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Harmadik fejezet.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
1. A komplex számsík

A III. Kötet Második fejezetéből ismert a komplex szám fogalma (III. Kötet, (5.19)), ill. a komplex számhalmaznak az un. Gauss-féle számsík pontjaira történő egy-egyértelmű leképezése (l. III. Kötet, 5.1 ábra).

1.1 Definíció. Az M halmazt komplex elemünek nevezzük, ha elemet komplex számok, vagyis ha $z \in M$, akkor $z = x + iy$, ahol $x \in \mathbb{R}$, $y \in \mathbb{R}$ és i a képzetes egység (l. III. Kötet, 5.18).

Az M komplex elemü halmaznak valós szám is eleme lehet, hiszen bármely x valós szám tekinthető egy $z = x + 0i$ alaku "elfajult" komplex számnak. $M \subseteq \mathbb{Z}$, vagyis M részhalmaza az összes komplex szám Z halmazának, (lásd III. Kötet, 5.1 Definíció). Az M halmaz egyértelműen szemléltethető a Gauss-féle számsík egy ponthalmazával, esetleg az egész számsíkkal.

1.2 Definíció. A komplex elemü M halmazt korlátosnak nevezzük, ha az elemek abszolút értékeiből (III. Kötet, 5.4 Definíció) álló nemnegatív számhalmaz felülről korlátos.

(Geometriailag: ha az M halmaznak megfelelő ponthalmaz minden pontja lefedhető a Gauss-féle számsíkról helyezett, elég nagy sugarú és origó középpontú körkörül.)

1.1 Tétel. Korlátos komplex elemü M halmaz elemünek valós részéből $[\text{Re } z]$, ill. képzetes részéből $[\text{Im } z]$ álló valós számhalmazok (lásd III. Kötet, (5.21)) is korlátosak.

Bizonyítás. $A \ |\text{Re } z| \leq \sqrt{(\text{Re } z)^2 + (\text{Im } z)^2} = |z|$, ill.
$|\text{Im } z| \leq \sqrt{(\text{Re } z)^2 + (\text{Im } z)^2} = |z|$ egyenlőtlenségokból közvetlenül adódik.

1.2 Tétel. Ha egy komplex elemü M halmaz elemünek valós részéből és képzetes részéből álló halmazok mindegyike korlátos halmaz, akkor M is korlátos.
Bizonyítás. Az \(|z|<|\text{Re }z|+|\text{Im }z|\) egyenlőtlenségből következnél adódik.

Az 1.1, ill. 1.2 Tételek szemléletes geometriát tartalmaz: minden koordinátáskiból ponttalma, amely lefedhető origó középpontú körrel, lefedhető koordináta tengelyekkel párhuzamos oldalú téglatest alap, ill. fordítva, az ilyen téglatest lefedhető ponttalma leírható körlelap.

1.3 Definíció. A \(z_0\) komplex szám \(\rho>0\) sugaru \(K_{z_0,\rho}\) környezet

mindazon \(z\) komplex számok halmaza, melyeknek \(z_0\)-től

való eltérése (különbségük abszolút értékével mérve) kisebb \(\rho\)-nál. \(K_{z_0,\rho} = \{z \in \mathbb{Z} : |z-z_0|<\rho\}\)

Ez geometriailag a komplex számsik azon pontjainak halmazát jelenti, amelyek egy \(z_0\), középpontú és \(\rho\) sugaru kör belsőjében helyezkednek el. A fenti "körlelapu" környezeten kívül szokásos a \(z_0 = x_0 + iy_0\) komplex szám "téglatest alakú" (speciálisan négyzetes alakú) környezetét is érthetjük: \(K_{z_0,a,b} = \{z \in \mathbb{Z} : \text{Re }z - x_0 < a, \text{Im }z - y_0 < b\}\), ahol \(a>0\) és \(b>0\). Szemlélet alapján is könnyen belátható, hogy minden kör alaku környezet tartalmaz megfelelő méretű téglatest alakú környezetet

\((a^2+b^2=\rho^2)\), ill. minden téglatest alakú környezet tartalmaz kör alaku környezetet \((\rho \leq \min(a,b))\).

1.4 Definíció. A \(z_0\) komplex számot az \(M\) halmaz torlódási pontjának nevezzük, ha tetszőleges kicsiny \(\rho>0\) mellett is a \(K_{z_0,\rho}\) környezet az \(M\) halmaz végtelen sok elemét tartalmazza.

1.1 Példa. A \(|z|<1\) egyenlőtlenséggel jellemzett halmaznak minden eleme torlódási pont, torlódási ponttal ezenkívül az \(|z|=1\) egyenlőtlenséggel jellemzett pontok is. E példa is mutatja, hogy a torlódási pont nem feltétlenül eleme a halmaznak.

1.3 Tétel. Ha \(z_0 = x_0 + iy_0\) komplex szám torlódási pontja \(M\)-nek,

akkor \(x_0\) torlódási pontja a \(\{\text{Re }z : z \in M\}\), vagy \(y_0\) torlódási pontja az \(\{\text{Im }z : z \in M\}\) valós számhalmaznak.

Bizonyítás. Az 1.4 Definíciódból, ill. az azt megelőző megjegyzésből következik, hogy tetszőleges kicsiny pozitív \(a\) és \(b\) érték mellett végtelen sok olyan \(z\) eleme van az \(M\) halmaznak, amely bele esik \(z_0\) téglatest alaku
környezetébe, \(K_{z_0} \), a, b-bé. Ez azonban azt jelenti, hogy \(|\text{Re } z - x_0| < a \), vagy \(|\text{Im } z - y_0| < b \), végtelen sok \(z \in M \)-re.

1.4 Tétel. (Weierstrass tétel.) A végtelen sok elemet tartalmazó és korlátozott \(M \) halmaznak van legalább egy torlódási pontja.

Bizonyítás. Az 1.1 Tételből következik, hogy az \(M \) halmaz elemeinek valószínűséggel (ill. képzetes részeit tartalmazó halmazok \(M_x \), ill. \(M_y \)) is korlátosak. E halmazok közül legalább az egyik végtelen sok különböző elemet tartalmaz. A valós számhalmazokra bizonyított analóg tételből következik, hogy pl. az \(M_x \) halmaznak van legalább egy torlódási pontja \((x_t) \).

Azaz tetszőleges \(\zeta > 0 \)-hoz létezik az \(M \)-nek egy olyan végtelen részhalmaza \(M' \subseteq M \), hogy annak minden \(z \in M' \) elemére igaz

\[
x_t - \zeta < \text{Re } z < x_t + \zeta.
\]

\(M' \) elemeinek képzetes része is korlátozott halmaz (hiszen korlátos halmaz részhalmaza); amennyiben ez is végtelen elemű halmaz, úgy az előbb idézett tétel értelmében van legalább egy torlódási pontja, \(y_t \). Ha e képzetes részekből álló halmaz csak véges sok különböző \(y \) értéket tartalmaz, akkor ezen \(y \) értékek közül legalább az egyik az \(M' \) végtelen sok elemének képzetes része, ezt is jelöljük \(y_t \)-vel.

Nyilván az így definiálható \(x_t + y_t \) alaku komplex szám tetszőleges \(\zeta \) oldalú "négyzetalakú", ill. \(\zeta \) sugaru "kör alakú" környezetébe végtelen sok eleme esik az eredeti \(M \) halmaznak, ami a tétel bizonyítását jelenti.

1.5 Definíció. Az \(M \) komplex elemű halmazt zártnak nevezzük, ha tartalmazza minden torlódási pontját.

1.6 Definíció. \(z_0 \)-t akkor mondjuk az \(M \) halmaz belső pontjának, ha van egy olyan környezete, amely részhalmaza \(M \)-nek, \((K_{z_0} \subseteq M) \). Az \(M \) halmaz komplementerének (lásd 1. Kötet, Első fejezet) belső pontját az \(M \) halmaz külső pontjának nevezzük. A \(z_1 \) szám határpontja az \(M \) halmaznak (függetlenül attól, hogy \(z_1 \) eleme-e a halmaznak vagy sem), ha tetszőlegesen kicsi környezete tartalmazza minden \(z_1 \) halmaznak, mind az \(M \) komplementerjének elemét.

Az \(M \) komplex elemű halmazt nyíltnak nevezzük, ha komplementere zárt.
1.7 Definíció. A komplex számok nyílt és összefüggő (lásd V. Kötet, 1.2 Definíciót) M halmazát tartománynak nevezzük.

1.8 Definíció. A tartományt egyszeresen összefüggőnek nevezzük, ha tartalmazza minden benne haladó egyszerű zárt görbe által határolt tartományt is.

1.2 Példa. Az $1 < |z| < 2$ egyenlőtlenséggel jellemzett környűrű a komplex sík egy (nem egyszeresen összefüggő) tartománya.

1.9 Definíció. Egy függvényt (lásd I. Kötet, Első fejezet) akkor mondunk komplex változósnak (v. röviden komplexnek), ha mind az értelmezési tartománya, mind az értékkészlete komplex elemű halmaz. Elfajult a komplex függvény, ha e halmazok egyike csak valós számokat (elfajult komplex számokat) tartalmaz. A komplex változós függvény független változó-ját leggyakrabban $z_{-v} + (z = x + i y)$ függő változóját $w_{-v} + (w = u + i v)$ jelöljük, a köztük fennálló explicit függvénykapcsolat jele, a valós analógának megfelelően $w = f(z)$, $w = g(z)$ stb.

1.3 Példa. Komplex függvény pl. $f(z) = z^2$, amely bármely számhoz a négyzetét rendeli függvényértékül, vagy $g(z) = \frac{1}{z}$, mely minden számhoz a reciprokát rendeli. Az előbbi értelmezési tartománya Z, az utóbbié $Z \setminus \{0 + 0i\}$. Elfajult komplex függvényre példa a komplex számok abszolút értéke $r = |z|$, valós, ill. képzetes része $(x = \text{Re} z, \text{ill.} y = \text{Im} z)$. Az e példákban szereplő függvények mindegyikének Z volt az értelmezési tartománya, míg értékkészletük az első esetben a nemnegatív valós számok halmaza, a második, ill. harmadik példánál R. További példa $w = \cos t + i \sin t$ alaku függvény kapcsolat, ahol $t \in \mathbb{R}$. Itt a független változót fajulnak el valóssz, az értékkészlet a komplex számok origó középpontu, egységsugarú körének pontjaival szemléltethető geometriailag.

2. Komplex tagú sorozatok és sorok

2.1 Definíció. A $T \mapsto Z$ függvényt (amely tehát a természetes számok halmozát a komplex számok halmozába képezi le) végzeten komplex számsorozatnak nevezzük.

A végzeten komplex számsorozat tehát egy speciális esete az elfajult komplex függvénynek; itt az értelmezési tartomány a valós számok halmozának T részhalmaza. A végzeten komplex sorozat jobb esemény analóg az I. Kötet, Negyedik fejezetében definiált (valós) végzeten sorozat jelölésével.
2.1 Példa. Végtelen komplex számsorozatok:

\[1+i, (1+i)^2, \ldots, (1+i)^n, \ldots, \text{ azaz } z_n = (1+i)^n, n \in \mathbb{T}. \quad (2.1) \]

\[\cos(2\pi + 1 \sin 2\pi), \ldots, \cos \left(\frac{2\pi}{n} + i \sin \frac{2\pi}{n} \right), \ldots, \]

azaz \(z_n = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}, n = 1, 2, 3, \ldots \) \quad (2.2)

\[\cos \pi + i \sin \pi, \ldots, \frac{1}{n} (\cos \pi n + i \sin \pi n), \ldots, \]

azaz \(z_n = \frac{1}{n} (\cos \pi n + i \sin \pi n), n = 1, 2, 3, \ldots \) \quad (2.3)

2.2 Definíció. A végtelen komplex számsorozatot akkor nevezzük korlátosnak, ha a tagjainak abszolút értékéből képzett számsorozat \(\{z_n^2\}, n \in \mathbb{T} \) korlátos. (Lásd I. Kötet, Negyedik fejezet).

2.1 Tétel. A \(z_n, n \in \mathbb{T} \) végtelen komplex számsorozat korlátozásának szükséges és elégséges feltétele az, hogy a sorozat tagjainak valós részéből és képzetes részéből képzett két valós számsorozat \((x_n = \text{Re } z_n, n \in \mathbb{T}, \text{ ill. } y_n = \text{Im } z_n, n \in \mathbb{T}) \) mindegyik korlátos legyen.

Bizonyítás. A Tétel közvetlen következménye az 1.1 és 1.2 Tételnek. I

Megjegyzés. (2.2) és (2.3) korlátos sorozatok, míg (2.1) nem korlátos.

2.3 Definíció. Azt mondjuk, hogy a \(z_n, n \in \mathbb{T} \) végtelen komplex számsorozatnak határértéke a \(h \) komplex szám \(\lim_{n \to \infty} z_n = h \), ha \(h \) nak minden \(\varepsilon > 0 \) -hoz tartozó környezete \((K_h, \varepsilon) \) véges sok kivételes elemtől eltekintve a sorozat minden elemét tartalmazza. (A kivételes elemek száma \(\varepsilon \) -nak monoton csökkenő függvénye.) Vagyis minden \(\varepsilon > 0 \) -hoz tartozik \(N \in \mathbb{T} \), hogy minden \(n \geq N \) -re \(|z_n - h| < \varepsilon \).

Geometriailag ez a definíció azt jelenti, hogy a komplex számskak akármilyen kis \(\varepsilon \) sugarú és \(h \) középpontú körnapja véges számu pont kivételével lefedik a számsorozat tagjainak megfelelő pontokat.
A komplex végtesen sorozatok határértékére vonatkozó további definição az I. Kötet, 15.1 Definíció analógjájára fogalmazható meg.

2.4 Definíció. Azt mondjuk, hogy a \(z_n, n \in T \) végtesen komplex számsorozat konvergens, ha van \(h \in Z \) határértéke. Minden nem konvergens sorozatot divergens komplex számsorozatnak nevezzünk.

2.2 Tétel. Ha a \(p_n, n \in T \) és a \(q_n, n \in T \) végtesen komplex számsorozat konvergensek, akkor összegük (különbségük) is konvergens és

\[
\lim_{n \to \infty} (p_n + q_n) = \lim_{n \to \infty} p_n + \lim_{n \to \infty} q_n
\]

Bizonyítás. Az I. Kötet, 15.3 Tételeinek bizonyításával analóg!

2.3 Tétel. Ha a \(p_n, n \in T \) végtesen komplex számsorozat konvergens, akkor \(c p_n, n \in T \) is konvergens, ahol \(c \in Z \), és igaz, hogy

\[
\lim_{n \to \infty} (c p_n) = c \lim_{n \to \infty} p_n
\]

Bizonyítás. Az I. Kötet 15.3 Tétele bizonyításával analóg!

2.4 Tétel. Ha a \(p_n, n \in T \) és a \(q_n, n \in T \) végtesen komplex számsorozatok konvergensek, akkor szorzatuk is konvergens és

\[
\lim_{n \to \infty} (p_n q_n) = \lim_{n \to \infty} p_n \cdot \lim_{n \to \infty} q_n
\]

Bizonyítás. Az I. Kötet 15.5 Tétele bizonyításával analóg!

2.5 Tétel. Ha a \(p_n, n \in T \) és a \(q_n \neq 0, n \in T \) végtesen komplex számsorozatok konvergensek és \(\lim q_n \neq 0 \), akkor hányadosuk is konvergens és

\[
\lim_{n \to \infty} \frac{p_n}{q_n} = \frac{\lim p_n}{\lim q_n}
\]

Bizonyítás. Az I. Kötet, 15.6 Tétele bizonyításával analóg!
2.5 Definíció. Egy $z_n = x_n + i y_n$, $n \in \mathbb{T}$ végiglen komplex számsorozat konjugált sorozatának nevezzük az elemek konjugáltjából képzett sorozatot:

$$\overline{z}_n = x_n - i y_n, \quad n \in \mathbb{T}.$$

2.6 Tétel. Ha a z_n, $n \in \mathbb{T}$ végiglen komplex számsorozat konvergens és határértéke h, akkor konjugált sorozata is konvergens és határértéke az eredeti sorozat határértékének konjugáltja:

$$\lim_{n \to \infty} \overline{z}_n = \overline{h}$$

Bizonyítás. A $|\overline{z}_n - \overline{h}| = |z_n - h|$ egyenlőség közvetlenül következik abból, hogy a konjugálás és kivonás művelete felcserélhető, ill. abból, hogy egy komplex számnak és konjugáltjának abszolút értéke egyenlő.

$$\overline{z}_n - \overline{h} = (\overline{z}_n - h) \implies |\overline{z}_n - \overline{h}| = |\overline{z}_n - h| = |z_n - h|$$

Ez az egyenlőség pedig lényegében a tétellel egyenértékű, hiszen feltevésünk értelmében tetszőleges $\varepsilon > 0$-hoz létezik $N \in \mathbb{T}$, hogy minden $n \geq N$-re $|z_n - h| < \varepsilon$, ami azt jelenti, hogy $|\overline{z}_n - \overline{h}| < \varepsilon$.

A tétel és bizonyítás geometriailag közvetlenül is szemléltethető. A konjugált sorozat előállítása a megfelelő pontsorozatnak a valós tengelyre történő tükörozését jelenti, ha tehát az eredeti sorozat tagjai (véges számú kivételtől eltekintve) lefedhetők egy h középpontú és ε sugarú körlappal, ugy a tükörpontok sorozata (úgyanannyi kivételes ponttól eltekintve) lefedhető a körlap tükörképével.

2.7 Tétel. Egy $z_n = x_n + i y_n$, $n \in \mathbb{T}$ végiglen komplex számsorozat konvergenciájának szükséges és elégséges feltétele a Re $z_n = x_n$, $n \in \mathbb{T}$ és az Im $z_n = y_n$, $n \in \mathbb{T}$ valós számsorozatok konvergenciája. Amennyiben $\lim_{n \to \infty} z_n = h$, $\lim_{n \to \infty} x_n = k$, ill. $\lim_{n \to \infty} y_n = \ell$, ugy érvényesek a Re $h = k$, ill. Im $h = \ell$ egyenlőségek is.

Bizonyítás. Először a feltétel szükségességét bizonyítjuk, vagyis azt, hogy $\lim_{n \to \infty} z_n = h$-ból következik a
\[\lim_{n \to \infty} \Re z_n = \lim_{n \to \infty} x_n = \Re h = k, \]
ill.

\[\lim_{n \to \infty} \Im z_n = \lim_{n \to \infty} y_n = \Im h = \ell. \]

Ez pedig azonnal következik:

\[\Re z_n = x_n = \frac{z_n + \overline{z}_n}{2}, \]
ill.

\[\Im z_n = y_n = \frac{z_n - \overline{z}_n}{2i}. \]

azonosságokból, valamint a 2.2, 2.3 és 2.6 Tételekből.

A feltétel elégségességének bizonyításához feltételezett

\[\lim_{n \to \infty} x_n = k, \quad \lim_{n \to \infty} y_n = \ell \]

határértékek létezéséből a 2.2 és a 2.3 Tétel alapján következik a

\[\lim_{n \to \infty} (x_n + i y_n) = k + i \ell \]

eyenlőség, ami pedig azonos a bizonyítandó

\[\lim_{n \to \infty} z_n = h \]
állitással. !

2.8 Tétel. Ha \(z_n = x_n + i y_n, \quad n \in \mathbb{T} \) végében komplex számsorozat konvergens és határértéke \(h \), akkor a tagok abszolút értékei-ből képzett nemnegatív valós számsorozat is konvergens és határértéke \(|h| \)

\[\lim_{n \to \infty} |z_n| = |h|. \]

Bizonyítás. Első lépésként a \(\lim_{n \to \infty} |z_n|^2 = |h|^2 \) összefüggést igazoljuk,
amihez elegendő az \(|z_n|^2 = z_n \cdot \overline{z_n} \) (ill. \(h = |h|^2 \), azonosságokra és a 2.6 valamint a 2.4 Tételre hivatkozunk. Tekintettel az \(y = \sqrt{x} \) valós
függvény folytonosságára a \(|z_n|^2 = |h|^2 \) -ből következik, hogy
\[
\lim_{n \to \infty} |z_n| = |h|
\]

A 2.8 Tétel általában nem fordítható meg, vagyis \(|z_n|, n \in T \) konvergenciájából általában nem következik a \(z_n, n \in T \) sorozat konver-
genciája. Ennek belátásához elegendő a \(z_n = \cos n + i \sin n, n \in T \) soro-
zatra hivatkozunk. Az első mondatban ismételten hangsúlyozott "általá-
ban" arra utal, hogy van kivétel eset is; nevezetesen: \(|z_n| \to 0 \) -ből kö-
vetkezik a \(z_n, n \in T \) sorozat zérushoz konvergálása. (Lásd 2.3 Definíció,
h=0 esetre.)

2.6 Definíció. Az olyan végzeten numerikus sort (IV. Kötet), amelynek
tagjai komplex számok, végzeten komplex számsorok nevezzük.

E sorok részletősszegeit ugyanúgy értelmezzük, mint ahogy azt a valós
végzeten számsorok esetében tettük. A végzeten számsor konvergenciája
komplex tagok esetében is ekvivalens a részletősszegek sorozatának kon-
vergenciájával és a konvergens sor összegé komplex tagok esetében is
meggyezik a részletősszegek sorozatának határértékével. A nem konver-
gens végzeten sort komplex tagok esetében is divergens sorok nevezzük.

2.9. Tétel. A \(\sum_{n=0}^{\infty} z_n = \sum_{n=0}^{\infty} (x_n + i y_n) \) végzeten komplex számsor
akkor és csak akkor konvergens, ha a sor tagjainak valós ré-
széből, ill. képzetes részéből előállított két végzeten valós
számsor \(\left(\sum_{n=0}^{\infty} x_n, \text{ ill. } \sum_{n=0}^{\infty} y_n \right) \) konvergens; az összeg valós,
ill. képzetes részére érvényesek az alábbi egyenlőségek:

\[
\Re \left(\sum_{n=0}^{\infty} z_n \right) = \sum_{n=0}^{\infty} x_n, \text{ ill.}
\]
\[
\Im \left(\sum_{n=0}^{\infty} z_n \right) = \sum_{n=0}^{\infty} y_n.
\]
Bizonyítás. Az állítás a 2.7 Tétel közvetlen következménye, ha figyelembe vesszük, hogy bármely részletösszeg valós, ill. képzetes része a tagok valós részének, ill. képzetes részének az összege.

2.10 Tétel. A \(\sum_{n=0}^{\infty} z_n \) végtelen komplex számsor konvergenciájának szük- séges feltétele, hogy a \(z_n, n \in T \) sorozat konvergáljon a zé- rushoz.

Bizonyítás. Az állítás a valós végtelen numerikus sorokra kimondott analóg tételek és a 2.9 Tételnek közvetlen következménye.

2.11 Tétel. Legyenek \(\sum_{n=0}^{\infty} z_n \) és \(\sum_{n=0}^{\infty} w_n \) végtelen komplex számsorok konvergensek, továbbá \(\lambda \) és \(\mu \) tetszőleges komplex állandók, ugy a

\[
\sum_{n=0}^{\infty} (\lambda z_n + \mu w_n)
\]

komplex számsor is konvergens és összegére igaz az alábbi egyenlőség:

\[
\sum_{n=0}^{\infty} (\lambda z_n + \mu w_n) = \lambda \sum_{n=0}^{\infty} z_n + \mu \sum_{n=0}^{\infty} w_n.
\]

Bizonyítás. Az állítás a valós végtelen numerikus sorokra kimondott analóg tételek és a 2.9 Tételnek közvetlen következménye.

2.7 Definíció. A \(\sum_{n=0}^{\infty} z_n \) alaku végtelen komplex számsort abszolút konvergencnek nevezzük, ha \(\sum_{n=0}^{\infty} |z_n| \) nemnegatív valós számsor konvergens.

2.12 Tétel. Minden abszolút konvergens végtelen komplex számsor kon- vergens.

Bizonyítás. Az \(|z_n| = |x_n| = |y_n| \), ill. \(z_n \in \mathbb{C} \), \(|z_n| = |x_n| \) egyenlőt- lenségekből közvetlenül következik, hogy a 2.9 Tétel kimondása kapcsán
definiált \[\sum_{n=0}^{\infty} x_n, \text{ ill.} \sum_{n=0}^{\infty} y_n \] sorok abszolút konvergensek, vagyis (a 2.12 Tétel valós sorokra bizonyított analogonja értelmében) konvergensek. Ez pedig a 2.9 Tétel értelmében az állítás bizonyítását jelenti. !

A 2.12 Tétel nem fordítható meg, vagyis \[\sum_{n=0}^{\infty} z_n \] konverenciájából nem következik a \[\sum_{n=0}^{\infty} |z_n| \] sor konverenciája, azaz léteznek olyan konvergens komplex számsorok, amelyek nem abszolút konvergensek. E megjegyzésben megfogalmazott állítás igazolásához egérgődő a IV. Kötetben definiált feltételeseken konvergens sorokra hivatkoznunk, amelyeket ott ugyan valós numerikus sorokként definiáltuk, de mint ilyenek tekintethetők (elfajult) komplex számsoroknak is.

2.2 Példa. A \[\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \ldots + z^n + \ldots \] alaku végtelen sor ("komplex kvocientű" geometrálai sor) konvergens (sőt abszolút konvergens) ha \(|z| < 1 \), divergens ha \(|z| \geq 1 \). Az állítás első fele a 2.12 Tétel következménye, míg a második része a 2.10 Tételből következik. A

\[\sum_{n=0}^{\infty} z^n = \frac{1}{1-z} \] ha \(|z| < 1 \)

egyenlőség igazolása a valós geometrálai sor összegképletének levezetésének alkalmazott gondolatmenet megismétlésével adódik (lásd IV. Kötet, 1.1 Példa).

3. Folytonos függvények

Az \(f(z) \) komplex függvény

\[f(z) = u(x, y) + i \ v(x, y) \]

alakját kanonikusnak nevezzük. Itt \(u, \text{ ill.} \ v \) a függő változó valós, ill. képzetes része \(x \)-nek és \(y \)-nak a független változó valós és képzetes részének \(x = \text{Re} \ z, y = \text{Im} \ z \) függvénye. Tehát minden komplex függvény ekvivalens egy \(u(x, y); v(x, y) \) kétváltozós valós függvényekből álló függvényrendszerrel.
3.1 Példa. Az $f(z) = z^2$ komplex függvény kanonikus alakja

$u + iv = (x + iy)^2 = x^2 - y^2 + 21xy$, vagyis e függvénnyel az alábbi függvény-rendszer ekvivalens:

$$u = x^2 - y^2, \quad v = 2xy.$$

3.2 Példa. Az $u = \frac{x}{x^2 + y^2}, \quad v = -\frac{y}{x^2 + y^2}$ kétváltozós függvény rendszer

is definiál egy komplex függvényt, melynek kanonikus alakja:

$$f(z) = \frac{x}{x^2 + y^2} - i \frac{y}{x^2 + y^2}.$$

Ezt kissé átalakitva:

$$f(z) = \frac{x-iy}{x^2 + y^2} = \frac{\bar{z}}{z. \bar{z}} = \frac{1}{z} \quad (z \neq 0)$$

3.1 Definíció. Legyen z_0 az $f: \mathbb{D} \rightarrow \mathbb{C}$, (DCZ) komplex függvény értelmezési tartományának torlódási pontja; azt mondjuk, hogy az $f(z)$ függvény határértéke e z_o helyen a H komplex szám,

$$\lim_{z \rightarrow z_0} f(z) = H, \quad (f(z) \rightarrow H, \text{ ha } z \rightarrow z_0),$$

ha bármilyen kicsiny pozitív szám is ε, tartozik hozzá egy olyan alkalmas $\varphi(\varepsilon) > 0$ szám, hogy minden olyan z-re, amelyre $z \in \mathbb{K}_{z_0, \varphi(\varepsilon)} \setminus \{z_0\}$

$$\bigcap_{\varepsilon > 0} \mathbb{D} \cap |f(z) - H| < \varepsilon$$

3.1 Tétel. (Cauchy-féle kritérium.) Legyen $\varepsilon > 0$ tetszőlegesen kicsiny szám, z_0 pedig a 3.1 Definícióban megadott tulajdonsággal rendelkező komplex szám. A $\lim_{z \rightarrow z_0} f(z)$ (véges) határérték létezik z_0-ra,

tezésének szükséges és elégséges feltétele, hogy tetszőleges $\varepsilon > 0$-hoz található egy $\varphi(\varepsilon) > 0$ szám, ugy, hogy minden z', $z'' \in \mathbb{K}_{z_0, \varphi(\varepsilon)} \setminus \{z_0\}$

$$|f(z') - f(z'')| < \varepsilon.$$

- 18 -
Bizonyítás. L. a II. Kötet, 4.3 Tétel bizonyítását.

3.3 Példa. Vizsgáljuk, hogy a \(w = \frac{1}{z} \) függvények van-e határértéke az \(i \) helyen? E helynek van olyan \(\varrho \) sugaru környezete \((\varrho < 1) \), amelyben a függvény értelmezve van, és azt állítsuk, hogy

\[
\lim_{z \to i} \frac{1}{z} = -i.
\]

Tetszőleges \(\varepsilon > 0 \)-ra az

\[
\left| \frac{1}{z} - (-i) \right| = \left| \frac{1}{z} + i \right| < \varepsilon
\]

egyenlőtlenségről kell kimutatnunk, hogy az \(i \) hely alkalmas környezetébe eső minden \(z \)-re teljesül.

3.1 ábra

A fenti egyenlőtlenséget átrendezve adódik, hogy

\[
1 + iz < \varepsilon \left(\frac{1}{z} + \frac{1}{2} \right),
\]

vagyis

\[
|1 - y + x| < \varepsilon \sqrt{\frac{2}{2}}^{\frac{2}{2}},
\]

vagyis négyzetre emelve

\[
x^2 + (y-1)^2 < \varepsilon^2 (x^2 + y^2).
\]

Legyen \(0 < \varrho < \min \left(\frac{1}{2}, \frac{\varepsilon}{2} \right) \). Ekkor, ha az \((x,y)\) pont az \(i \) pont \(\varrho \) sugaru \(K_{1,\varrho} \) környezetébe esik, vagyis ha

\[
x^2 + (y-1)^2 < \varrho^2,
\]

akkor az origótól való távolságának négyzete

\[
x^2 + y^2 > (1 - \varrho)^2 > \frac{1}{4},
\]

ahol felhasználtuk azt, hogy \(1 - \varrho > \frac{1}{2} \). Mivel \(\varrho < \frac{\varepsilon}{2} \), ezért

\[
-19-
\]
\[x^2 + (y-1)^2 < \frac{\varphi^2}{4} < \frac{\xi^2}{4} < \xi^2 (x^2 + y^2), \]

ami a bizonyítandó egyenlőtlenséggel ekvivalens.

3.4 Példa. Vizsgáljuk, hogy az \(f(z) = \frac{z}{\varphi} \) függvények van-e határértéke

\(0 \) helyen? E helyek minden környezetében értelmezve van a függvény kivéve magát a 0 helyet. Be fogjuk látni, hogy a függvények nincs határ-

értéke a 0 helyen, hiszen

\[
\frac{z}{\varphi} = \frac{r \left[\cos \varphi + i \sin \varphi \right]}{r \left[\cos(-\varphi) + i \sin(-\varphi) \right]} = \cos 2\varphi + i \sin 2\varphi.
\]

A \(\varphi = \) konstans, origóátmenő egyenesek mentén, tehát a függvény állandó. Minthogy az origó tetszőleges kicsiny környezetébe esik pl.

\(\varphi = 0 \) és \(\varphi = \frac{\pi}{4} \) arcusu pont, így felveszít a függvény az 1, ill. i értéket; ez kizárja a határérték létezését (3.1 Tétel).

3.2 Tétel. Legyen \(\lim_{z \to z_0} f(z) = H \) és \(\lim_{z \to z_0} g(z) = G \), akkor összegüknek, szorzatuknak és hányadosuknak is van határértéke a \(z = z_0 \) helyen, feltéve, hogy a legutóbbi esetben a nevezőben álló függvény a \(z_0 \) hely egy környezetében 0-tól különbözik és a ha-

tárértéke sem 0.

Érvényesek az alábbi egyenlősségek:

\[
\lim_{z \to z_0} [f(z) + g(z)] = H + G
\]
\[
\lim_{z \to z_0} [f(z)g(z)] = HG
\]
\[
\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{H^-}{G}; \quad G \neq 0;
\]

\[
g(z) \neq 0, \quad z \notin K_{z_0} \cup \{z_0\}.
\]
Bizonyítás. A bizonyítás gondolatmenete lényegében azonos a valós egy-
változós függvényekre, ill. a (valós és komplex) sorozatokra kimondott
analóg tételek bizonyításának gondolatmenetével (lásd pl. 2.2 – 2.5 Té-
teleket).

3.3 Tétele. Legyen \(\lim_{z \to z_0} f(z) = H \). Akkor az \(f(z) \) függvény konjugáltjának
\[\lim_{z \to z_0} \overline{f(z)} \] -nek is van határértéke a \(z = z_0 \) helyen is
\[\lim_{z \to z_0} \overline{f(z)} = \overline{H}. \]

Bizonyítás. Lényegében megegyezik a komplex sorozatokra kimondott ana-
lóg tétele a 2.6 Tétel bizonyításával.

3.4 Tétele. Egy \(w = f(z) = u(x, y) + i v(x, y) \) komplexváltozós függvénynek
a \(z_0 = x_0 + i y_0 \) helyen akkor és csak akkor van véges határ-
értéke, ha az \(u = u(x, y) \) és \(v = v(x, y) \) kétváltozós függvények-
nek véges határértéke van az \((x_0, y_0) \) helyen
\[\lim_{(x, y) \to (x_0, y_0)} u(x, y) = U \quad \lim_{(x, y) \to (x_0, y_0)} v(x, y) = V, \]
és érvényesek az alábbi egyenlőségek:
\[\text{Re} \left[\lim_{z \to z_0} f(z) \right] = U \]
\[\text{Im} \left[\lim_{z \to z_0} f(z) \right] = V. \]

Bizonyítás. Lényegében megegyezik a komplex sorozatokra megfogalmazott és a fentivel sok tekintetben analóg 2.7 Tétel bizonyításával.

3.2 Definíció. Az \(f(z) \) komplex függvényt egy \(z_0 \) helyen folytonosnak
mondjuk, ha
a) értelmezve van e helyen,
b) van véges határértéke mikor \(z \to z_0 \),
c) e határérték megegyezik a helyettesítési értékkel.
Egy tartományon folytonos a komplex függvény, ha a tartomány minden pontjában folytonos.

3.5 Tétel. Ha az $f(z)$ és $g(z)$ függvények folytonosak a $z = z_0$ helyen, akkor összegük $[f(z) + g(z)]$, szorzatuk $[f(z).g(z)]$ és a $g(z_0) \neq 0$ esetben hányadosuk $\left[\frac{f(z)}{g(z)}\right]$ is folytonos a $z = z_0$ helyen.

Bizonyítás. Lényegében megegyezik a folytonos valós függvényekre megfogalmazott analóg tételek (II. Kötet, 6.3, 6.4 és 6.5 tételek) bizonyításával.

3.6 Tétel. Ha az $f(z)$ komplex függvény folytonos egy z_0-bel helyen, akkor e függvény konjugáltja $\bar{f}(z)$ is folytonos e z_0-bel helyen.

Bizonyítás. Az állítás közvetlen következménye a 3.2 Definícióknak és a 3.3 Tételeknak.

3.7 Tétel. Egy $f(z) = u(x,y) + i v(x,y)$ komplex függvény akkor és csak akkor folytonos $z_0 = x_0 + iy_0$ helyen, ha az $u(x,y)$ és $v(x,y)$ kétváltozós függvények folytonosak az (x_0,y_0) helyen.

Bizonyítás. Az állítás közvetlen következménye a 3.2 Definícióknak és a 3.4 Tételeknak.

3.8 Tétel. Ha a $h(z)$ és $f(z)$ komplex függvények olyanok, hogy f értékészlete részhalmaza h értelmezési tartományának, továbbá f folytonos a z_0 helyen, és h folytonos az $f(z_0)$ helyen, akkor a $$(h \circ f)(z) = h[f(z)]$$ összetett függvény is folytonos a z_0 helyen.

Bizonyítás. A II. Kötet 6.6 Tételének bizonyításával analóg módon történik.

3.9 Tétel. Ha az $f(z)$ komplex függvény folytonos a z_0 helyen, akkor az $|f(z)|$ valósértékű komplex függvény is folytonos a z_0 helyen.

Bizonyítás. A 3.6 Tételből következik, hogy $\overline{f(z)}$ is folytonos a z_0 helyen.
Figyelembe véve az \(|f(z)| = \sqrt{f(z) \overline{f(z)}} \) azonosságot továbbá a 3.8 Tételt, állításunkat bebizonyítottuk.

3.10 Tétel. Ha az \(f(z) \) komplex függvény folytonos a \(z \) sík egy korlátos és zárt ponthalmazán, akkor e függvény abszolút értéke e halmazon korlátos, sőt felveszi legkisebb és legnagyobb értékét is.

Bizonyítás. Az \(|f(z)| = \sqrt{u^2(x,y) + v^2(x,y)} \) valós kétváltozós függvény folytonossága a 3.9 Tétel következménye. A korlátos és zárt halmazon folytonos többváltozós függvényekre érvényes Welerstrass tételek (V. Követet, 4.6 és 4.7 Tételek) következménye a bizonyítandó állítás.

3.5 Példa. \(p(z) = \sum_{k=0}^{n} a_k z^k \) alaku komplex függvény (komplex polinom, ahol az \(a_0, a_1, \ldots, a_n \neq 0 \) számok tetszőleges komplex konstansok) mindenütt folytonos, hiszen mind a valós, mind a képfzetes része valós együtthatós kétváltozós polinom, tehát folytonos függvény. Legyen \(R > 0 \) és tekintsük \(|p(z)| \)-t azon \(z \)-kre, amelyekre \(|z| \leq R \). A 3.10 Tétel értelmezése szerint legalább egy olyan \(z_0 \) helye a körlemeznél, amelyre

\[
\left| \sum_{k=0}^{n} a_k z^k \right|_{z_0} \text{ a minimuma, ill. legalább egy olyan } z_1 \text{ helye a körlemeznek, amelyre}
\]

\[
|z| \leq R \text{ halmazon.}
\]

A minimum helyek halmaza (amely nem üres halmaz) függ \(R \)-től. Könnyen beláthatjuk azonban, hogy ha \(R \) elég nagy akkor e halmaz elemeinek száma nem változik \(R \) növekedésével, vagyis a \(z \)-sík origó középpontu és elég nagy \(R \) sugarú kör a feladat \(|p(z)| \) összes minimumát. Ugyanis, mivel

\[
|p(z)| = \left| \sum_{k=0}^{n} a_k z^k \right| = |z|^n \left| \sum_{k=0}^{n} a_k z^{k-n} \right| \rightarrow \infty,
\]

\[
\text{ha } |z| \rightarrow \infty,
\]

ezért \(|p(z)|\) tetszőleges nagy számnál nagyobb értéket vesz fel, az elég nagy \(R \) sugarú körön kívül. Ez azt jelenti, hogy \(|p(z)|\) minimum helyei e körkörön vannak.
3.11 Tétel. (Az algebra alaptetele). Legyen \(p_n(z) = \sum_{k=0}^{n} a_k z^k \) \((a_n \neq 0)\) pontosan \(n \)-edfokú polinom \((n \geq 1)\), ugy létezik legalább egy olyan \(z_o \) hely (a polinom gyöke), amelyre \(\sum_{k=0}^{n} a_k z_o^k = 0 \).

(B tétel lehetséges átfogalmazásait és következményeit a III. Kötet 7. pontja tartalmazza.)

Bizonyítás. Feltételezzük, hogy a 3.11 Tétel nem igaz, majd e feltevés alapján ellentmondásra fogunk jutni, ami a feltevésünk helytelenlégét, tehát a bizonyítandó tételek helyességét igazolja.

Az indirekt feltevés értelmében \(p_n(0) \neq 0 \).

Legyen \(R > 0 \) olyan pozitív szám, hogy \(|p_n(z)| > |p_n(0)| > 0 \), ha \(|z| \geq R \). A 3.5 Példa végén mondottakból következik, hogy ilyen \(R \) létezik.

Az \(|p_n(z)| \) függvényről tudjuk, hogy van olyan \(z_o \) hely \((|z_o| < R)\), ahol minimumát felveszi (lásd 3.5 Példa és azt követő megjegyzés) és ez a minimális érték indirekt feltételünknek megfelelően pozitív szám. Azaz

\[
\min_{z \in \mathbb{Z}} |p_n(z)| = |p_n(z_o)| = a > 0.
\]

Rendezzük át a

\[
p_n(z) = \sum_{k=0}^{n} a_k z^k \] polinomot \(z - z_o \) hatványai szerint: \(p_n(z) = \sum_{k=0}^{n} b_k (z-z_o)^k \).

Könnyen belátható, hogy \(b_n = a_n \neq 0 \) és \(b_o = p_n(z_o) \), tehát \(|b_o| = a > 0 \).

Ha \(p_n(z) \) -t részletesen klirók, adódik, hogy

\[
p_n(z) = a_n (z-z_o)^n + b_{n-1} (z-z_o)^{n-1} + \ldots + b_s (z-z_o)^s + b_o,
\]

ahol \(s \) az a legkisebb pozitív egész kitevő, amelyhez tartozó \((z-z_o)^s \) hatvány együtthatója 0-tól különbözik \((b_s \neq 0)\). Tehát \(1 \leq s \leq n - 1 \).

(Megjegyzés: az \(s = n \) eset ellentmond a feltevésünknek, mert a \(p_n(z) = a_n (z-z_o)^n + b_o \) alakú komplex polinommak vannak gyökei, éspedig a \(z = z_o + \sqrt[n]{\frac{b_o}{a_n}} \) alaku komplex számok.)

Feltevésünk értelmében \(|p_n(z)| \geq |p_n(z_o)| = |b_o| = a > 0 \). Válaszszuk most speciálisan a \(z \) független változót úgy, hogy a \(z-z_o \) szám
arcusa: \[\varphi = \frac{\arccos \theta - \arccos b}{s} \] legyen. Ezzel elérjük azt, hogy
\[\text{arc } b_s(z - z_o)^s = \text{arc } b_s + s \varphi = \text{arc } b_o + \varphi, \] vagyis azt, hogy a (3.1) alakú polinom utolsó két tagjának arcusa \(\varphi \)-vel különbözővén összegyük abszolút értéke a tagok abszolút értékeinek megfelelő sorrendben képzett különbségével egyenlő.

Jelöljük \[|z - z_o| = t \] rel, amelyet kicsiny, pozitív változónak kívánunk egyelőre tekinteni.

E jelölések segítségével (3.1) a következő képpen alakul
\[
p_n(z) = a_n \left[\cos \phi + i \sin \phi \right] + b_{n-1} r^{n-1} \left[\cos(n-1) \phi + i \sin(n-1) \phi \right] + \ldots + b_{s+1} r^{s+1} \left[\cos(s+1) \phi + i \sin(s+1) \phi \right] + b_s r^s \left[\cos s \phi + i \sin s \phi \right] + b_o r^s,
\]
\[\left| p_n(z) \right| \leq r^{s+1} \left| a_n r^{n-s-1} \cos \phi + i \sin n \phi \right| + b_{n-1} r^{n-s-2} \left| \cos(n-1) \phi \right| + \ldots + b_{s+1} \left| \cos(s+1) \phi + i \sin(s+1) \phi \right| \]
\[+ b_s r^s \left[\cos s \phi + i \sin s \phi \right] + b_o r^s = r^{s+1} \left| a_n r^{n-s-1} e^{i \phi} \right| + \ldots + b_{s+1} e^{i(s+1) \phi} \left| b_s \right| r^s,
\] (3.2)
ahol \(r \) elég kicsiny ahhoz, hogy \[\left| b_o \right| - \left| b_s \right| r^s > 0 \] legyen.

Ha \(r \to 0 \) (a rögzített \(\varphi \) mellett), ugy a (3.2) egyenlőttség jobb oldalának első tagja erősebben \((s+1) \)-ed rendben tart \(0 \)-hoz mint \[\left| b_s \right| r^s \], tehát van olyan \(r_0 \) amelyre az
\[
r^{s+1} \left| a_n r^{n-s-1} e^{i \phi} \right| + b_{n-1} r^{n-s-2} e^{i(n-1) \phi} + \ldots + b_{s+1} e^{i(s+1) \phi} \left| b_s \right| r^s
\]
\[+ \left| b_o \right| r^s \leq \frac{1}{2} \left| b_s \right| r^s,
\]
Legyen most \(z_1 = z_o + r_o \left[\cos \varphi + i \sin \varphi \right] \), akkor (3.2) értelmében
\[
\left| p_n(z_1) \right| < \frac{1}{2} \left| b_s \right| r^s + \left| b_o \right| - \left| b_s \right| r^s = \left| b_o \right| - \frac{1}{2} \left| b_s \right| r^s < \left| b_o \right|,
\]

- 25 -
vagyis találtunk z_1 helyet ugy, hogy $|p_n(z_1)|$ kisebb egy az $|h_0|$-nál
is kisebb számnál; ez pedig ellentmond a kiinduló feltevésünknek, amely
szerint $|p_n(z)| \leq |h_0|$

Ezzel a kiinduló feltevés helytelen ségét és így az algebra alaptételét
bebizonyítottuk.!
4. Komplex függvény differenciálhatósága és differenciálhányadosa

4.1 Definíció. Legyen az \(f(z) \) komplex függvény a \(z_0 \) hely egy környezetében értelmezve, akkor definiálható a \(\Delta z \) független \(f(z_0 + \Delta z) - f(z_0) \) változónak \(g(\Delta z) = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \) komplex függvénye, amelyet az \(f(z) \) függvény \(z_0 \) helyhez tartozó különbségi hányadosának, vagy differenciálhányadosának nevezzük. A 4.1 Definícióban szereplő \(g(\Delta z) \) függvény a \(\Delta z = 0 \) helyen nincs értelmezve.

4.2 Definíció. Akkor mondjuk, hogy az \(f(z) \) függvény a \(z = z_0 \) helyen differenciálható, ha a 4.1 Definícióban szereplő \(g(\Delta z) \) függvények van határértéke, mikor \(\Delta z \to 0 \) -hoz, és ezt a határértéket nevezzük az \(f(z) \) függvény differenciálhányadosának a \(z_0 \) helyen

\[
\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{df(z)}{dz} \bigg|_{z=z_0} = f'(z_0)
\]

4.3 Definíció. Akkor mondjuk, hogy az \(f(z) \) függvény a \(z = z_0 \) helyen differenciálható, ha a \(\Delta w = f(z_0 + \Delta z) - f(z) \) "függvény növekmény" mint \(\Delta z \) függvénye értelmezve van, ha \(|\Delta z| \) elég kicsi, és előállítható egy lineáris függvény (főrész) és egy "mellékrezs" összegeként, pontosabban
\[\Delta w = f(z_0 + \Delta z) - f(z_0) = A \Delta z + \varepsilon(\Delta z), \]

főrész mellékrész

ahol \(A \) egy \(\Delta z \)-től független komplex szám és \(\varepsilon(\Delta z) \) egy olyan komplex függvény, amelyre igaz, hogy
\[\lim_{\Delta z \to 0} \varepsilon(\Delta z) = 0. \]

Az így definiált \(A \) számot nevezzük az \(f(z) \) komplex függvény \(z_0 \) helyéhez tartozó differenciálhatóságának:

\[A = f'(z_0) = \frac{df}{dz} \bigg|_{z=z_0} \]

4.1 Tétel. A 4.2 és 4.3 Definíciók ekvivalensek, azaz ha az \(f \) függvény a 4.2 Definíció értelmében differenciálható, akkor a 4.3 Definíció értelmében is differenciálható és fordítva; a két definícióban értelmezett differenciálhatóságok is megegyeznek.

Bizonyítás. Megegyezik a II. Kötet, 11.1 Tételének bizonyításával.

4.1 Példa. A \(w = z^2 \) függvény tetszőleges \(z_0 \) helyen differenciálható és a differenciálhatósága \(2z_0 \), mert e függvény növekménye

\[\Delta w = (z_0 + \Delta z)^2 - z_0^2 = 2z_0 \Delta z + (\Delta z)^2 = \begin{cases} 2z_0 \Delta z & \text{ha } \Delta z \to 0 \\ \varepsilon(\Delta z) \end{cases} \]

alakú és így a 4.3 Definíció alapján állításunk bizonyított.

4.2 Példa. A \(w = \bar{z} \) függvény egyetlen \(z_0 \) helyen sem differenciálható.

Ennek bizonyítása érdekében tekintsük a függvény 4.1-ben definiált differenciálhatóságát

\[g(\Delta z) = \frac{z_0 + \Delta z - \bar{z}_0}{\Delta z} = \frac{z_0 + \Delta z - z_0}{\Delta z} = \frac{\Delta z}{\Delta z}, \]

amelynek a 3.4 Példa szerint \(\Delta z \to 0 \) esetén nincs határértéke.
Megjegyzés. A $w = z$ függvény mindenütt folytonos; ez az állítás a 3.6 Tétel közvetlen következménye.

4.2 Tétel. Ha az f függvény a z_0 helyen differenciálható, akkor ott folytonos is.

Bizonyítás. Megegyészík a II. Kötet, 11.2 Tételének bizonyításával.

Megjegyzés. A 4.2 Tétel megfordítása nem érvényes. Lásd 4.2 Példa.

A komplex függvények differenciálpszámítása sok vonatkozásban analóg a valós függvények differenciálpszámításával; a II. Kötet 12. pontjában kimondott 12.1 ... 12.5 Tételek, ill. a 12.1 ... 12.4 Példákban megfogalmazott állítások és azok ott megadott bizonyításai érvényben maradnak komplex függvényekre is.

4.3 Tétel. Az f függvény akkor és csak akkor differenciálható a z_0 helyen, ha az $u = \text{Re } f$, ill. az $v = \text{Im } f$ kétváltozós függvények a megfelelő (x_0, y_0) helyen totálisan differenciálhatóak és az e helyhez tartozó parcitális deriváltak kielégítik a

\[
\begin{align*}
 u'_x &= v'_y \\
 u'_y &= -v'_x
\end{align*}
\]
(4.1)

egyenlőségeket, az ún. Cauchy-Riemann féle parcitális differenciálegyenleteket.

Bizonyítás. Bevezetve a következő jelöléseket:

\[
f(z) = u(x, y) + i\cdot v(x, y); \quad z_0 = x_0 + i\cdot y_0, \quad \Delta z = \Delta x + i\cdot \Delta y,
\]

\[A = p + i\cdot q, \quad E(\Delta z) = E_1(\Delta x, \Delta y) + i\cdot E_2(\Delta x, \Delta y)\]

a differenciálhatóság 4.3 Definíciója ugy alakul, hogy igaz az

\[
[u(x_0 + \Delta x, y_0 + \Delta y) + i\cdot v(x_0 + \Delta x, y_0 + \Delta y)] - [u(x_0, y_0) + i\cdot v(x_0, y_0)] = \\
= (p+q)(\Delta x + i\cdot \Delta y) + [E_1(\Delta x, \Delta y) + i\cdot E_2(\Delta x, \Delta y)](\Delta x + i\cdot \Delta y)
\]
(4.2)
egyenlőség, ahol a p és q számok függetlenek $\triangle x$-től és $\triangle y$-től és az $\xi_1(\triangle x, \triangle y)$, ill. $\xi_2(\triangle x, \triangle y)$ kétváltozós függvények 0-hoz tar-
tanak, amikor $(\triangle x, \triangle y) \to (0,0)$-hoz. A (4.2) egyenlőségben a bal- és a jobb oldal valós, ill. képzetes részlet egyenlővé téve kapjuk, hogy

$$u(x_0 + \triangle x, y_0 + \triangle y) - u(x_0, y_0) =$$

$$= p \cdot \triangle x - q \cdot \triangle y + \xi_1(\triangle x, \triangle y) \triangle x - \xi_2(\triangle x, \triangle y) \triangle y$$

(4.3)

$$v(x_0 + \triangle x, y_0 + \triangle y) - v(x_0, y_0) =$$

$$= q \cdot \triangle x + p \cdot \triangle y + \xi_2(\triangle x, \triangle y) \triangle x + \xi_1(\triangle x, \triangle y) \triangle y$$

(4.4)

A (4.3) és (4.4) egyenlőségek azt jelentik, hogy az u és v kétvál-
tozós függvények totálisan differenciálhatók és a p, ill. q számok:

$$p = u'(x_0, y_0) = v'(x_0, y_0),$$

ill.

$$q = -u'(x_0, y_0) = v'(x_0, y_0).$$

Ezzel bebizonyítottuk, hogy a tételben kimondott feltételek az f függvény differenciálhatóságának szükséges feltételei. Könnyen belátható, hogy ezen feltételek elégésgések is. Az u és v függvények totális differenciálható-
ságából és a Cauchy-Riemann egyenletekből következnek

$$u(x_0 + \triangle x, y_0 + \triangle y) - u(x_0, y_0) = p \cdot \triangle x - q \cdot \triangle y + \xi_1 \triangle x + \xi_2 \triangle y$$

és

$$v(x_0 + \triangle x, y_0 + \triangle y) - v(x_0, y_0) = q \cdot \triangle x + p \cdot \triangle y + \xi_3 \triangle x + \xi_4 \triangle y,$$

ahol $p = u'_x = v'_y$, $q = -u'_y = v'_x$ és $\xi_k \to 0$, ha $(\triangle x, \triangle y) \to (0,0)$,

$k = 1,2,3,4$. Szorozzuk meg a második egyenletet i-vel és adjuk hozzá az elsőhöz:

$$f(z_0 + \triangle z) - f(z_0) = (p+iq) (\triangle x + \triangle y) + (\xi_1 + 1 \xi_3 \triangle x + (\xi_2 + i \xi_4) \triangle y.$$

Osszuk el az utóbbi egyenletet $\triangle = \triangle x + \triangle y$-nal:
\[
\frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = p + iq + \left(\frac{\xi_1 + i \xi_2}{\Delta z} \right) \frac{\Delta x}{\Delta z} + \left(\frac{\xi_3 + i \xi_4}{\Delta z} \right) \frac{\Delta y}{\Delta z}
\]

Mivel \(\left| \frac{\Delta x}{\Delta z} \right| \leq 1, \quad \left| \frac{\Delta y}{\Delta z} \right| \leq 1 \) és \(\lim_{\Delta z \to 0} \left(\frac{\xi_1 + i \xi_3}{\Delta z} \right) = \lim_{\Delta z \to 0} \left(\frac{\xi_2 + i \xi_4}{\Delta z} \right) = 0 \),
azt kapjuk, hogy létezik \(f \) deriváltja, úl.

\[
\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = p + iq .
\]

4.4 Következmény. Ha az \(f(z) = u(x, y) + i v(x, y) \) függvény a \(z \) sík egy ponthalmazán differenciálható, akkor a deriváltfüggvénye (a differenciálhányadosa, mint \(z \) függvénye):

\[
f'(z) = u'(x, y) + i v'(x, y) = u'(x, y) - i u'(x, y) \]

\[
= v'(x, y) + i v'(x, y) = v'(x, y) - i v'(x, y)
\]

A magasabbrendű deriváltakat valamint a (többször) folytonosan differenciálhatóság fogalmát a valós függvények analóg fogalmainak megfelelően definiáljuk. Pl. ha \(f'(z) \) deriválható, akkor ennek deriváltját nevezzük az \(f \) függvény második deriváltjainak és jelöljük \(f'' \)- el. Amennyiben az \(f'' \) függvény folytonos, akkor azt mondjuk, hogy \(f \) kétszer folytonosan differenciálható.

4.4 Definíció. Egy \(T \) tartományon analitikusnak nevezzük az \(f(z) \) függvényt, ha \(T \) minden pontjában differenciálható.

4.5 Definíció. Egy kétszer folytonosan differenciálható \(g(x, y) \) kétváltozós függvényt harmonikus függvénynek nevezünk, ha kielégíti a \(g''_{xx} + g''_{yy} = 0 \) alakú un. Laplace féle parciális differenciálegyenletet.

4.5 Tétel. Ha az \(f(z) = u(x, y) + i v(x, y) \) függvény a \(T \) tartományon leg-alább kétszer folytonosan differenciálható, akkor mind a valós, mind a képzetes része harmonikus függvény.

Vagyis

\[
\frac{u''_{xx}}{u''_{yy}} = 0
\]

és

\[
\frac{v''_{xx}}{v''_{yy}} = 0
\]
Bizonyítás. A (4.1) Cauchy-Riemann egyenletek ismételt differenciálása után azt kapjuk, hogy

\[u''_{xx} = v''_{yy}, \quad \text{ill.} \quad v''_{xx} = -u''_{yy} \]
\[u''_{yy} = -v''_{xy}, \quad \text{ill.} \quad v''_{yy} = u''_{xy} \]

Ezen egyenlőségek összeadása után megkapjuk a bizonyítandó egyenlőségeket, ha figyelembe vesszük, hogy a vegyes másodrendű parciális deriváltak mind az \(u\), mind a \(v\) függvény esetében függetlenek a differenciálás sorrendjétől (lásd V. Kötet, 7.2 Tétel). 1

4.6 Definíció. Az \(u(x,y)\) és \(v(x,y)\) kétváltozós harmonikus függvényeket egymás harmonikus társainak nevezzük, ha létezik olyan \(f(z)\) analitikus függvény, hogy \(\Re[f(z)] = u\) és \(\Im[f(z)] = v\).

4.7 Definíció. Legyen \(p(x,y) = p_1(x,y)I + p_2(x,y)J\) az egyszeresen összefüggő \(D\) tartományon folytonosan differenciálható síkbeli vektormező; az \(f(z) = u(x,y) + i v(x,y)\) kétváltozós folytonosan differenciálható függvényt a \(D\) tartományon \(p\) komplex potenciáljának nevezzük, ha

\[\operatorname{grad} u(x,y) = p(x,y), \quad (x,y) \in D, \]

vagyis

\[u_x' = p_1, \quad u_y' = p_2, \quad \text{ill.} \]
\[p = u_x' + u_y' j. \]

4.8 Definíció. A \(w = w_1(x,y)I + w_2(x,y)J\) kétdimenziós vektormezőt és a \(w = w_1(x,y)I + w_2(x,y)\) komplex függvényt egymással kölcsönösen ekvivalensnek nevezzük.

4.6 Tétel. A komplex potenciálakkal rendelkező \(p\) kétdimenziós vektormező örvény- és forrásmentes, azaz mind a rotációja, mind a divergenciája 0.

Bizonyítás. Az örvénymentesség a \(\operatorname{rot} p = \operatorname{rot} \operatorname{grad} u = 0\) azonosságból közvetlenül következik. A forrásmentesség igazolása érdekében tekintsük \(\operatorname{div} p - u\):
\[\text{div } p = \text{div } \text{grad } u = u_{xx}'' + u_{yy}'' = 0 , \]

mivel a 4.5 Tétel és a 4.7 Definíció szerint az \(u(x,y) \) függvény harmonikus.

4.7 Tétel. Az \(f(z)=u+iv \) komplex potenciállal rendelkező \(p(x,y) \) kétdimenziós vektormezővel ekvivalens \(p(z) \) komplex függvényt a következő alakokban ír felírhatjuk:

\[p = \bar{f}'(z) , \]

ill. bevezetve a \(q(x,y) = \text{grad } v(x,y) \) kétdimenziós vektormezőt, illetve az ezzel ekvivalens \(q(z) \) komplex függvényt

\[p = -i \cdot q . \]

Bizonyítás. A 4.5 Definíciót, a (4.1) Cauchy-Riemann egyenleteket és a 4.4 Következményt figyelembe véve adódik, hogy

\[p = u'(x,y) - i \cdot v'(x,y) = \bar{f}'(z) \]

Az állítás második részének bizonyításához vizsgáljuk a \(\text{grad } v \)-vel ekvivalens \(q(z) \) komplex függvény 1-szereséit:

\[-i q(z) = v_x'(x,y) - i v_y'(x,y) = u_x'(x,y) - i v_x'(x,y) = \bar{f}'(z) = p . \]

4.8 Tétel. Ha a folytonosan differenciálható \(p \) kétdimenziós vektortér egy egyszeresen összefüggő tartományban örvény- és forrásmentes, akkor van \(f(z) \) komplex potenciálja, azaz a \(p \)-vel ekvivalens \(p \) komplex függvény előállítható \(p = \bar{f}'(z) \) alakban.

Bizonyítás. Tekintsük a \(p = X(x,y)j + Y(x,y)j \) vektormezőt, amelyről tudjuk, hogy \(- \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} = 0 \), ill. azt, hogy \(\frac{\partial X}{\partial x} + \frac{\partial Y}{\partial y} = 0 \). Vizsgáljuk egyidejűleg az ugyancsak kétszer differenciálható \(q = -Y(x,y)j + X(x,y)j \) segédvektormezőt. Egyeszerű számolással ellenőrizhető, hogy ez is örvény- és forrásmentes, hiszen

\[\left| \text{rot } q \right| = \left| \frac{\partial Y}{\partial y} + \frac{\partial X}{\partial x} \right| - \left| \text{div } p \right| = 0 , \]

- 33 -
ill.

\[\text{div } q = -\frac{\partial Y}{\partial x} + \frac{\partial X}{\partial y} = 0. \]

Minthogy \(p \) és \(q \) is rotációmentes vektorterek, előállíthatók egy-egy skalárpotenciál gradienseként, azaz

\[p = \text{grad } u = u'_x(x,y)x + u'_y(x,y)y \]

és

\[q = \text{grad } v = v'_x(x,y)x + v'_y(x,y)y \]

Figyelembe véve az \(X = u' = v'_y \), ill. az \(Y = u' = -v'_x \) egyenlőségeket, ill. az azokban szereplő kétváltozós függvényekre vonatkozó feltételeket következik. hogy az \(f(z) = u(x,y) + i v(x,y) \) komplex függvény analitikus és \(p \) kétdimenziós vektormező komplex potenciálja.

5. Konform leképezések

Az egyváltozós valós függvény szemléltetése a koordinátára sikban a függvény grafikonjának (I. Kötet, 3.2 Definíció) megfelelő ponttalma megadásával történik. Ez a ponttalma a legfontosabb esetekben síkgörbe.

A komplex függvény analóg módon történő "szemléltetése" csak négydimenziós euklideszi térben lenne lehetséges.

Egy komplex függvény egy speciális kétdimenziós vektor-vektor függvénynek tekinthető, amely a független változó sík \{ z, w \} bizonyos (az értelmezési tartományba cső helyvektoraihoz, ill. ezek végpontjaihoz hozzárendelt a függő változó síkjának \{ w sík \} meghatározott helyvektorait, ill. ezek végpontjait. Minden komplex függvény ekvivalent egy síkban található a z síkba eső értelmezési tartománynak egy másik síkban levő síkhalmazra (a w síkban levő síkhalmazra (a w síkba eső értékkészletre) történő leképezésével. Akkor mondjuk, hogy szemléltettük az \(f(z) \) függvény által létrehozott leképezést, ha a z síkon ábrázolva megadjuk az értelmezési tartomány bizonyos részhalmazait (pl. gőrbéit, görbeseregelt) és a w síkon azokat az alakzatokat, amelyeknek a leképezés e részhalmazokat megfelelteti.

5.1 Példa. A \(w = a + bz \) alakú elsőfokú komplex polinom (a \(\neq 0 \), b tetszőleges komplex konstansok) a z sík origó középpontu, R sugarú körnek seregét átvizsi a w sík b középpontu és a l. R sugarú körbe.

E függvény a z sík tetszőleges egycenesát egycenesbe, tetszőleges körét pedig körbe viszi át.
5.2 Példa. A z^2 függvény a z sík origó középpontu, R sugarú
$\text{Imz} = y = 0$ félkörrel a w sík ugyancsak origó középpontu körülbe viszi
át; ez az állítás közvetlenül belátható, ha mind a függő
változót trigonometrikus alakban írjuk fel. Ugyanez a függvény a z sík
origóból kiinduló, m iránytangsú (m $\neq \pm 1$) egyenes az w sík ugyan-
csak az origóból kiinduló $\frac{2m}{1-m}$ iránytangsú félegyeneseibe, ill. az
$y = x$ és $y = -x$ egyenesei a $v = 1m w$ tengely pozitív, ill. alsó felébe
viszi át. A 3.2 Példából tudjuk új., hogy a z^2 függvény az
$$ u = x^2 - y^2 $$
függvényrendszerrel ekvivalens.
$$ v = 2xy $$

Legyen most $y = mx$; ennek megfelelően
$$ u = x^2 (1 - m^2) $$
$$ v = x^2 2m $$
ez pedig valóban az $[u, v]$ sík megadott iránytangsú félegyeneseinek pa-
raméteres egyenletrendszere. A z^2 függvény által létesített leképezés
nem egy-egyértelmű, mert a z_0 és a $-z_0$ pontokhoz ugyanazt a képpon-
tot rendeli.
5.3 Példa. Az \(\frac{1}{z} \) függvény a z sík \([r, \varphi]\) polárkoordinátájú pontjait

\((r \neq 0)\) a w sík \(\left[\frac{1}{r}, \varphi \right] \) polárkoordinátájú pontjain a képezi le; ha egy síkon ábrázoljuk az összetartozó pontpárokat, akkor az origó középpontu egységsgarú kör kerületi pontjait önmagukba viszi át a leképezés. A kör belső pontjai körön kívüli pontok, ill. a körön kívüli pontok a kör belső pontjai mennek át oly módon, hogy az összetartozó pontpárt (a "tárty-

és "képpontokat") összekötő egyenes átmegy a kör középpontján és az összeszettartozó pontok középponttól mért távolságnak szorzata 1. Az elemi

geometriában az ilyen leképezést az egységkörre történő inverálásának

nevezzük. Most a komplex függvényt eszközövel mutatjuk meg, hogy ez az

inverzió kör, körbe vagy egyenesbe, egyeneset pedig szintén körbe vagy

eyenesbe visz át. A továbbiakban a leképezést ismét a komplex függvény-

tanban szokásos módon, két számsikon szemléltetjük. Mivel

\[
\frac{1}{z} = \frac{1}{x-iy} = \frac{x+iy}{x^2+y^2},
\]
ezért a függvény az

\[
u = \frac{x}{2}, \quad v = \frac{y}{2}
\]

függvényrendszerrel ekvivalent.

lens. Minthogy a \(w = \frac{1}{z} \) leképezés inverz leképezése \(z = \frac{1}{w} \), a fenti

függvényrendszer inverz függvényrendszere

\[
x = \frac{-u}{u^2+v^2}, \quad y = \frac{-v}{u^2+v^2}.
\]

A z sík minden körének és egyenesének egyenlete \(A(x^2+y^2) + Bx + Cy +

+ D = 0 \) alakban írható, ahol \(A, B, C, D \) valós paraméterek (egyenes esetén \(A = 0 \)). A fenti egyenlettel jellemzett pontalmaz képét (az Inverz

függvényrendszer figyelembevételével) a

\[
A \left(\frac{u^2+v^2}{2} \right) + Bu + Cv + \frac{D}{u^2+v^2} + D = 0,
\]

vagyis

\[
D(u^2+v^2) + Bu + Cv + A = 0
\]

eyenlet jellemzi az \([u, v]\) síkon; ez pedig \(D \neq 0 \) esetben kör, \(D = 0 \) eset-

ben egyenes, vagyis ha a tárty síkon felvett alakzat (kör vagy egyenes) nem
tartalmazza az origót, akkor a képalakzat kör, ha tartalmazza az origót
(vagyis azt az egyetlen pontot, amely nincs benne az \(\frac{1}{z} \) függvény értelmezési tartományában), akkor az alakzat képe egyenes. Ilyenkor azt mondjuk, hogy a leképezés az origót a "végigten táloli pontba" viszi át.

5.4 Példa. A \(w = \frac{a}{c} z + \frac{b}{d} \) alakú komplex függvény, (ahol \(a, b, c \) és \(d \) komplex konstansok, amelyek az \(\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0 \) feltételtől eltekintve tetszőlegezek), az ún. lineáris törtfüggvény által létesített leképezés is körbe vagy egyenesbe viszi a tárgysík egyeneséit és köreit. Ez az állítás a \(w = \frac{A}{z} \) függvényre \((a = 0, b = A, c = 1, d = 0)\) az 5.3 Példában közölt gondolatmenet megismerésével igazolható. Az általános esetben pedig az

\[
\frac{a}{c} z + \frac{b}{d} = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| \cdot \left(\frac{1}{z + \frac{d}{c}} + \frac{a}{c} \right)
\]

azonosságból, az \(\frac{A}{z} \) függvényre vonatkozó előbbi megjegyzésből, valamint az 5.1 Példából következik.

5.1 Definíció. Azt mondjuk, hogy az \(f \) komplex függvény által létesített leképezés az értelmezési tartomány \(z_0 \) pontjában szögtartó, ha az egymást \(z_0 \)-ban metsző görbék (érinctől) irányított hajlósszögét nem változtatja meg.

5.2 Definíció. Az olyan leképezést, nevezzük kicsiben aránytartó leképezésnek, amelynél ígaz a

\[
\lim_{P \rightarrow R} \frac{PR}{QR} = \lim_{P' \rightarrow R'} \frac{P'R'}{Q'R'}
\]

eyenlőség, ahol \(R \) a tárgysík egy rögzített, \(P \) és \(Q \) annak két változó pontja, \(R', P' \) és \(Q' \) pedig e pontok képei a képsíkon.

5.3 Definíció. A szögtartó és kicsiben aránytartó leképezést konformis leképezésnek nevezzük.
5.1 Tétel. Legyen az \(f(z) \) komplex függvény a \(z \) helyen differenciálható és \(f'(z_0) \neq 0 \), akkor a függvény által \(z_0 \)-létesített leképezés a \(z_0 \) helyen konformis.

Bizonyítás. A szögtartás bizonyítása érdekében, elsőként azt fogjuk igazolni, hogy \(f \) a \(z_0 \) ponton áthaladó síma sikgörbét, a \(w \) sík egy olyan a \(w_0 = f(z_0) \) ponton áthaladó síma görbéjébe viszi át, amelynek a \(w_0 \) helyhez tartozó érintője a tárgygörbe megfelelő érintőjéhez képest egy a görbe megváltoztatásától független \(\varphi \) szöggel fordul el. Jelölje \(z \) a tárgygörbe egy változó és \(z_0 \)-tól különböző pontját, \(w \) pedig a kép görbe megfelelő pontját. \(\text{arc}(z - z_0) \) jelenti a tárgygörbe egyik szelőjének írányszögét, \(\text{arc}(w-w_0) \) pedig a kép görbe megfelelő szelőjének az írányszögét. E két írányszög különböse:

\[
\text{arc}(w-w_0)-\text{arc}(z-z_0) = \text{arc} \left(\frac{w-w_0}{z-z_0} \right) = \text{arc} \left[f'(z_0) \right] = \varphi,
\]

ha \(z \rightarrow z_0 \).

Az előbbiekből következik, hogy ha a \(z_0 \) pontban két egymást metsző differenciálható görbe képeit vizsgáljuk, ugyanis mindegyikének érintőit ugyanazon szögkel forgatta el a leképezés, tehát az érintők hajlászsgő változatlan.

Az

\[
\left| \frac{w-w_0}{z-z_0} \right| = \left| \frac{w-w_0}{z-z_0} \right| \left| f'(z_0) \right| \neq 0,
\]

ha \(z \rightarrow z_0 \) összefüggés pedig igazolja, hogy a leképezés az 5.2 Definíció értelmében kicsiben aránytartó.

6. Elemi függvények

6.1 Definíció. A komplex változós exponenciális függvényt a következő képpen értelmezzük:

\[
e^z = e^{x+iy} = e^x \cos y + ie^x \sin y
\]

vagyis

\[
e^z = e^x \left[\cos y + i \sin y \right], \quad z \in \mathbb{Z}.
\]
6.1 Tétel. Az \(e^z \) függvény az egész számsikon differenciátható és deriválja \(e^z \).

Bizonyítás. Az \(u(x,y) = e^x \cos y \) és \(v(x,y) = e^x \sin y \) az egész szíknak totálisan differenciálhatóak, és elsőrendű parciális deriváltjai
\[
(u'_x = e^x \cos y, \quad u'_y = -e^x \sin y, \quad v'_x = e^x \sin y, \quad v'_y = e^x \cos y)
\]
kielégítik a (4.1) Cauchy-Riemann egyenleteket. Így a 4.3 Tétel alapján bebizonyítottuk, hogy a függvény mindenütt differenciálható. A 4.4 Következményből pedig adóík, hogy
\[
(e^z)' = e^x \cos y + i e^x \sin y = e^z \cdot i
\]

6.2 Tétel. Az \(e^z \) komplex változós exponenciális függvény kielégít az \(e^{z_1 + z_2} = e^{z_1} \cdot e^{z_2} \) függvényegyenletet.

Bizonyítás. A \(e^{z_1} = e^{x_1} \left[\cos y_1 + i \sin y_1 \right] \) és \(e^{z_2} = e^{x_2} \left[\cos y_2 + i \sin y_2 \right] \) trigonometrikus alakban adott komplex számokat összeszorozva azt kapjuk, hogy
\[
e^{z_1 + z_2} = e^{x_1 + x_2} \left[\cos y_1 \cos y_2 - \sin y_1 \sin y_2 + i (\sin y_1 \cos y_2 + \cos y_1 \sin y_2) \right]
\]
\[
= e^{x_1 + x_2} \left[\cos (y_1 + y_2) + i \sin (y_1 + y_2) \right] = e^{z_1 + z_2} \cdot i
\]

Miután az \(e^z \) komplex függvényt értelmeztük, könnyű a hiperbolikus függvények értelmezése is a valós eset analógjára (lásd II. Kötet, 19.1 és 19.2 Definíció). Definíció szerint
\[
\sinh z = \frac{e^z - e^{-z}}{2}, \quad \cosh z = \frac{e^z + e^{-z}}{2}, \quad z \in \mathbb{Z}.
\]

A III. Kötet, 6.2 Definíciójában szereplő \(e^{ik\varphi} = \cos \varphi + i \sin \varphi \) összefüggés (Euler-formula) speciális esete a 6.1 Definícióink. Szokás e formula alábbi átrendezett alakjait is Euler-féle relációknak nevezni:
\[
\cos \varphi = \frac{e^{ik\varphi} + e^{-ik\varphi}}{2} = \cosh k\varphi
\]

- 39 -
\[\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i} = -i \sinh i\varphi \]
(6.3)

Ezen relációk az \(e^{i\varphi} = \cos \varphi + i \sin \varphi \), illetve \(e^{-i\varphi} = \cos \varphi - i \sin \varphi \) azonosságokból közvetlenül adódnak.

6.3 Tétel. A komplex változós exponenciális függvény periodikus, periódusa \(2\pi i \); azaz

\[e^{z+2\pi i} = e^z, \ z \in \mathbb{Z}. \]

Bizonyítás. A 6.1 Definícióból egyszerű behelyettesítéssel közvetlenül adódik.!

Az előző tételből látható, hogy az \(e^z \) függvény által létesített leképezés nem egy-egyértelmű, inverz leképezés (inverz függvény) csak bizonyos megszorításokkal értelmezhető.

6.2 Definíció. Az \(e^z \) függvény

\[S = \left\{ z : -\pi < \text{Im} \ z \neq \pi \right\} \]

tartományra vonatkozó leszúkjítésének inverz függvényét logaritmus függvénynek nevezzük és \(\ln z \) -vel jelöljük.

6.4 Tétel. Az \(\ln z = \ln(x+iy) = \ln \left[r(\cos \varphi + i \sin \varphi) \right] \) függvény valós része:

\[u = \ln r = \ln \sqrt{x^2 + y^2} \]

képzettes része:

\[v = \varphi = \arctan \frac{y}{x} \]

\([-\pi < \varphi \leq \pi]\)

Bizonyítás. \(e^{\ln z} = e^{u+iv} = e^u e^{iv} = e^u [\cos v + i \sin v] = z = r \left[\cos \varphi + i \sin \varphi \right] \). Ebből \(e^u = r \), ill. \(u = \ln r \) és \(v = \varphi \), ahol \((-\pi < v \leq \pi)\)!
6.3 Definíció.

\[\cos z = \frac{1}{2} (e^{iz} + e^{-iz}) , \quad z \in \mathbb{Z} , \]

ahonnan

\[\cos(x+iy) = \cos x \cos iy - \sin x \sin iy \]

következik (vö. (6.2)).

6.4 Definíció.

\[\sin z = \frac{1}{2i} (e^{iz} - e^{-iz}) , \quad z \in \mathbb{Z} , \]

ahonnan

\[\sin(x+iy) = \sin x \cos iy + \cos x \sin iy \]

következik (vö. (6.3)).

6.5 Tétel. A \(\cos z \) függvény az egész számsikon differenciálható és deriváltja \(\sin z \).

Bizonyítás. \(u = \Re(\cos z) = \cos x \cos y \) és \(v = \Im(\cos z) = -\sin x \sin y \) minde
nûtt totálisan differenciálható függvények és parciális deriváltjai,
\[u' = -\sin x \cos y ; \quad u' = \cos x \sin y ; \quad v' = -\cos x \sin y ; \quad v' = -\sin x \cos y \]

a (4.1) Cauchy-Riemann egyenleteket, így a 4.3 Tételből következik, hogy
\(e^{\cos y} \) mindenütt differenciálható. A 4.4 Következményből pedig adódik,
\[(\cos z)' = -\sin x \cos y - i \cos x \sin y = \]

\[= - [\sin x \cos y + i \cos x \sin y] = - \sin z . ! \]

6.6 Tétel. A \(\sin z \) függvény az egész számsikon differenciálható és deriváltja: \(\cos z \).

Bizonyítás. A 6.8 Tétel bizonyításával analóg módon elvégezhetô.

6.7 Tétel. A \(\cos z \) függvény kielégitti a \(\cos(-z) = \cos z \) függvényegyenleletet.

Bizonyítás. \[\cos(-z) = \cos(-x-iy) = \cos(-x) \cosh(-y) - i \sin(-x) \sinh(-y) = \]

\[= \cos x \cos y - i \sin x \sin y = \cos z . ! \]
6.8 Tétel. A \(\sin z \) függvény kielégíti a \(\sin(-z) = -\sin z \) függvényegyenletet.

Bizonyítás. \(\sin(-z) = \sin(-x-iy) = \sin(-x).\cosh(y) + \cos(x).\sinh(y) = \)
\[= -[\sin x \cosh y + i \cos x \sinh y] = -\sin z. \]

7. Komplex függvény vonalintegralja

Az egyváltozós valós függvény határozott integráljának egyik lehetőséges általánosításaként értelmezni fogjuk a komplex függvény görbementi integrálját. A fogalom sok vonatkozásban hasonló lesz a kétdimenziós vektor-vektor függvények vonalintegraljának fogalmához (lásd VI. Kötet), sőt kiszámítását is vissza tudjuk vezetni két alkalmasan definiált síkbeli vektor-vektor függvény görbementi integráljának kiszámítására.

7.1 Definíció. A rektifikálható (mérettől ivu) és irányított \(G \) görbebár legyen benne az \(f(z) \) függvény értelmezési tartományában; a \(z_0, z_1, z_2, \ldots, z_{n-1}, z_n \) pontok (un. osztálypontok) legyenek a \(G \) görbének, \(G \) irányításának megfelelő sorrendben, \(z_0 = \alpha \) és \(z_n = \beta \) jelentsék a görbedarab kezdő, ill. végpontját (ez utóbbiak nem feltétlenül különbözőek, a görbe lehet zárt is). A \(\gamma_1, \gamma_2, \ldots, \gamma_k, \ldots, \gamma_n \) pontok legyenek a görbe további pontjai éspedig oly módon elhelyezve, hogy \(\gamma_k (k = 1, 2, \ldots, n) \) arra a görberészre illeszkedjék, amelyet a \(z_{k-1} \) és \(z_k \) osztálypontok határolnak. Akkor a

\[
\sum_{k=0}^{n} f(\gamma_k)(z_k - z_{k+1})
\]

összeget nevezzük az \(f(z) \) függvénynek az adott \(G \) görbére vonatkozó és annak a \(z_1, z_2, \ldots, z_{n-1} \) osztálypontokkal jellemzett felosztásához tartozó egyik integrálközeli összegnek. (Ugyanahhoz a függvényhez, görbéhez és felosztáshoz természetesen végig sok más integrálközeli összeg is tartothat, hiszen végig sok szabadsági fokunk van az előírt tulajdonságú \(\gamma_k \) számok megválasztásában).

- 42 -
7.2 Definíció. A max \(\left| z_k - z_{k-1} \right| \) pozitív számot nevezzük egy felosztás \(k \) finomságának; az olyan integrálközelítő összegekből álló sorozatot, amelynél a felosztás finomsága zérushoz konvergál, nevezzük az integrálközelítő összegek egy minden határon túl finomodó sorozatának.

7.3 Definíció. Ha az integrálközelítő összegek bármely minden határon túl finomodó sorozata ugyanahhoz a véges komplex számhoz, A -hoz konvergál, akkor azt mondjuk, hogy az \(f(z) \) függvény az adott C görbén integrálható és ezt a határértéket nevezzük a függvénynek az adott görbére vonatkozó vonalintegráljának, jelölve:

\[
\int_G f(z) \, dz = A.
\]

Ha a G görbe zárt, akkor az \(f(z) \) függvény G -re vonatkozó vonalintegrálját a következőképpen jelöljük:

\[
\oint_G f(z) \, dz.
\]

7.1 Tétel. Ha \(f(z) \) integrálható a G görbén, akkor \(cf(z) \) is integrálható a görbén (c tetszőleges komplex konstans) és igaz, hogy

\[
\int_G c f(z) \, dz = c \int_G f(z) \, dz.
\]

Bizonyítás. A II. Kötet 23.4 Tételének bizonyításával analóg módon történik.

7.2 Tétel. Ha az \(f(z) \) és \(g(z) \) függvények integrálhatók a G görbén, akkor az \(f(z) + g(z) \) függvény is integrálható e görbén és igaz, hogy

\[
\int_G [f(z) + g(z)] \, dz = \int_G f(z) \, dz + \int_G g(z) \, dz.
\]

Bizonyítás. A II. Kötet 23.4 Tételének bizonyításával analóg módon történik.
7.3 Tétel. Ha \(-G \) jelöli az ellenkezőképpen irányitott \(G \) görbét, akkor
\[
\int_{-G} f(z)dz = -\int_{G} f(z)dz.
\]

Bizonyítás. A tétel annak a következménye, hogy a \(G \) görbe bármely felosztásához tartozó integrálközelítő összeg a \(-G \) görbe megfelelő felosztásához tartozó integrálközelítő összegnek \((-1)\) -szerele.

7.4 Tétel. Ha a \(G \) görbedarab hossza \(L \), és \(|f(z)| \leq M, \) ha \(z \in G \), akkor igaz, hogy
\[
\left| \int_{G} f(z)dz \right| \leq L \cdot M
\]

Bizonyítás. Elegendő azt kimutatnunk, hogy \(LM \) a téglányösszegek abszolút értékének felső korlátja:
\[
\left| \sum_{k=1}^{n} f(\zeta_k)(z_k - z_{k-1}) \right| \leq \sum_{k=1}^{n} |f(\zeta_k)| \cdot |z_k - z_{k-1}| \leq M \sum_{k=1}^{n} |z_k - z_{k-1}| \leq M \cdot L
\]

7.4 Definíció. Hozzárendelünk minden \(f(z) = u(x,y) + i \cdot v(x,y) \) komplex függvényhez kettő kétdimenziós vektor-vektor függvényt az un. segéd-vektormezőket az alábbi módon:
\[
R(z) = u(x,y) + i \cdot v(x,y),
\]
\[
I(z) = v(x,y) + i \cdot u(x,y).
\]

7.5 Tétel. Az \(f(z) \) függvény akkor és csak akkor integrálható a \(G \) görbén, ha segédvektormezőinek létezik e görbére vonatkozó vonalintegrálja, és a 7.4 Definíció jelöléseivel
\[
\int_{G} f(z)dz = \int_{G} R(z)dx + i \int_{G} I(z)dy.
\]
Bizonyítás. Egy adott felosztáshoz tartozó integrálközelítő összegek a bal-
és jobb oldalon megegyeznek, figyelembe véve, hogy \(z_k = \frac{x_k}{k} + i \eta_k \); \(z_{k-1} = \Delta x_k + i \Delta y_k \) és \(f(z_k) = u(z_k, \eta_k) + iv(z_k, \eta_k) \), illetve a \(\xi_k = \frac{x_k}{k} \) jelöléssel \(R(\xi_k) = u(z_k, \eta_k) - v(z_k, \eta_k) \), \(I(\xi_k) = v(z_k, \eta_k) + u(z_k, \eta_k) \) és \(\Delta x_k = \Delta x_k + i \Delta y_k \).

A 7.5 Tételből következik, hogy folytonos komplex függvénynek létezik vonálintegrálja a rektifikálható G görbe mentén. Folytonos komplex függvényhez rendelt segédvektormezők ugyanis szintén folytonosak, így létezik a görbeminti vonalintegráljuk.

7.6 Tétel. Legyen a reguláris G görbe az \(x = x(t), y = y(t), a \leq t \leq b \), paraméteres egyenletrendszerrel adva; vezessük be a \(z(t) = x(t) + i y(t) \) jelölést; ezzel a G görbe "komplex egyenlet-re", \(z = z(t), a \leq t \leq b \) legyen továbbá \(\dot{z}(t) = \dot{x}(t) + i \dot{y}(t) \); ha az \(f(z) \) komplex függvény G -n folytonos, akkor

\[
\int_{a}^{b} f(z)dz = \int_{a}^{b} f(z(t))\dot{z}(t)dt , \tag{7.1}
\]

ahol a jobb oldal egyszerű határozott integrálok ből épül fel a következőképpen

\[
\int_{a}^{b} f(z(t))\dot{z}(t)dt = \int_{a}^{b} \Re[f(z(t))\dot{z}(t)]dt + \int_{a}^{b} \Im[f(z(t))\dot{z}(t)]dt.
\]

Bizonyítás. A 7.5 Tétel és a VI. Kötet, 13.1 Tétel egyszerű következménye.

7.1 Példa. Legyen \(f(z) = \bar{z} \) és G görbe a \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) egyenletű ellipszise, pozitív forgási irányban körüljárva. Meghatározzuk az \(\oint f(z)dz \)

integrált. Figyelembe véve, hogy \(f(z) = \bar{z} = x - iy \), a függvényhez rendelt segédvektormezők (lásd 7.4 Definíció)
\[
R(x) = x \mathbf{i} + y \mathbf{j},
\]
\[
I(x) = -y \mathbf{i} + x \mathbf{j},
\]
és a \(G \) görbe paraméteres egyenletrendszere \(x = a \cos t, y = b \sin t, \)
il. \(\mathbf{r} = a \cos t \mathbf{i} + b \sin t \mathbf{j} \) ahol \(0 \leq t \leq 2\pi \).

\[
\oint_{G} R(x) \, dx = \int_{0}^{2\pi} R[x(t)] \dot{x}(t) \, dt = \int_{0}^{2\pi} x(t) \dot{x}(t) \, dt = \frac{1}{2} \left[x^2(t) \right]_{0}^{2\pi} = 0
\]

\[
\oint_{G} I(x) \, dx = \int_{0}^{2\pi} I[x(t)] \dot{z}(t) \, dt = \int_{0}^{2\pi} \left[-b \sin t \mathbf{i} + a \cos t \mathbf{j} \right] \left[-a \sin t \mathbf{i} + b \cos t \mathbf{j} \right] \, dt = 0
\]

\[
= \int_{0}^{2\pi} ab \left[\sin^2 t + \cos^2 t \right] \, dt = ab \int_{0}^{2\pi} \, dt = 2ab \pi = 2 \pi \, \text{ellipszis}.
\]

Tehát

\[
\oint_{G} \mathbf{z} \, dz = 2ab \pi = 2 \pi \, \text{ellipszis}.
\]

7.2 Példa. Legyen \(f(z) = \frac{1}{z^n} \), ahol \(n = 0, \pm 1, \pm 2, \pm 3, \ldots \) és \(G \) legyen a z sík origó középpontú pozitív irányítású R sugarú köre. Meghatározzuk az \(\oint_{G} \frac{1}{z^n} \, dz \) integrál értékét. \(G \) paraméteres egyenlete

\[
x = R \cos t, \quad y = R \sin t, \quad 0 \leq t \leq 2\pi,
\]
komplex egyenlete

- 46 -
\[
z = z(t) = R [\cos t + i \sin t] = Re^{it}, \quad 0 \leq t \leq 2\pi.
\]
\[
\dot{z} = i R e^{it}
\]
\[
f(z(t)) = \frac{1}{R^n} e^{int}
\]
\[
f(z(t)) \dot{z}(t) = \frac{i}{R^{n-1}} e^{i(1-n)t} = \]
\[
= \frac{i}{R^{n-1}} [\cos((n-1)t) + i \sin((n-1)t)] = \]
\[
= \frac{1}{R^{n-1}} \sin((n-1)t) + \frac{i}{R^{n-1}} \cos((n-1)t) \ dt
\]
\[
\oint_{G} \frac{dz}{z^n} = \frac{1}{R^{n-1}} \int_{0}^{2\pi} \sin((n-1)t) \ dt + \frac{i}{R^{n-1}} \int_{0}^{2\pi} \cos((n-1)t) \ dt = \]
\[
= \begin{cases}
2\pi i & \text{ha } n = 1 \\
0 & \text{ha } n = 0, \pm 1, \pm 2, \pm 3, \pm 4, \ldots
\end{cases}
\]
8. Cauchy tétele

A 4.4 Definícióban értelmezett függvény analititását egy tartományon (nyilat 1 és összefüggő ponthalmazon). Megjegyezzük, hogy a komplex sík egy pontjában analitikusnak nevezzük a függvényt, ha van a pontnak olyan környezete, amelyben analitikus. Nevezzük az analitikus függvényeket reguláris függvényeknek, ill. holomorf függvényeknek is. Ebben a fejezetben az analitikus függvények legfontosabb tulajdonságaival foglalkozunk.

8.1 Tétel. (Cauchy-tétel. A komplex függvénytani főtételle.) Ha az \(f(z) \) függvény a \(T \) egyszeresen összefüggő tartományban analitikus és \(G \) a \(T \) belsőjében haladó zárt rektifikálható görbe, akkor

\[
\oint_{G} f(z) \, dz = 0.
\]

Bizonyítás. Legyen \(f(z) = u(x, y) + iv(x, y) \). Az alábbi bizonyítás során feltelezzük, hogy az \(u'_{x}, u'_{y}, v'_{x}, v'_{y} \) kétváltozós függvények folytonosan differenciálhatók a \(T \) tartományon. A feltételekből következik, hogy az \(f(z) \) függvényhez hozzárendelt segédvektormezők (lásd 7.4 Definíció) rotációja zérus,

\[
\text{rot} \, R(r) = \left[-v'_{x} - u'_{y} \right] k = 0,
\]

\[
\text{rot} \, I(r) = \left[u'_{x} - v'_{y} \right] k = 0,
\]

mert teljesülnek a Cauchy-Riemann egyenletek. Ebből viszont következik (lásd VI. Kötet, 15.5 Tétel), hogy a segédvektormezők potenciálosak, illetve az, hogy a segédvektormezők zárt görbe mentén vett integrálja zérus. Állításunk most már a 7.5 Tételből következik.

Megjegyezzük, hogy a tétele bizonyítás elején tett kiegészítő feltévés nélkül is igaz. Eredeti formájában azonban bizonyítása lényegesen nehezebb (lásd \([4]\)).
8.2 Tétel. Az egyszeresen összefüggő T tartományban analitikus függvény T-ben haladó görbék menti integrálja kizárólag a görbe kezdő és végpontjától függ.

Bizonyítás. Legyen G_1 és G_2 két különböző és irányított görbe, amelyek mindegyike a z sík A pontjában kezdődik és B pontjában végződik. A G_1 és $-G_2$ görbedarabok egyesítése egy a belsejével együtt a T tartományba tartozó zárt görbe. Így a 7.3 és 8.1 Tételekből következik az állítás.

8.3 Tétel. Legyen G_1 és G_2 két egyszerű (önmagát nem metsző) zárt görbe, G_2 legyen benne a G_1 által határolt tartományban és a két görbén valamint a közéjük eső gyűrű-szerű tartományban legyen $f(z)$ analitikus, akkor igaz, hogy

$$\int_{G_1} f(z)dz = \int_{G_2} f(z)dz ,$$

ha mindkét zárt görbe azonos irányítású.

8.1 ábra
Bizonyítás. Vegyünk fel egy-egy pontpárt a G_1, ill. $(-G_2)$ görbén (a P_1 és R_1, ill. a P_2 és R_2 pontokat) és kössük össze P_1-et P_2-vel, ill. R_1-et R_2-vel a gyűrűszerű tartományban haladó rektifikálható görbékkel. Az $L_1 : P_1 P_2 A_2 R_2 R_1 A_1 P_1$, ill. az $L_2 : P_1 B_1 R_1 R_2 B_2 P_1$ zárt görbékre (lásd 8.1 ábra) teljesülnek a 8.1 Tétel feltételei, így igaz, hogy

$$ \oint_{L_1} f(z)dz = \oint_{L_2} f(z)dz = 0,$$

és természetesen

$$ \oint_{L_1} f(z)dz + \oint_{L_2} f(z)dz = 0.$$

Azonban (lásd 8.1 ábra)

$$ \oint_{L_1} f(z)dz + \oint_{L_2} f(z)dz = \oint_{G_1} f(z)dz + \oint_{-G_2} f(z)dz +$$

$$ + \oint_{P_2} f(z)dz + \oint_{P_1} f(z)dz +$$

$$ + \oint_{R_2} f(z)dz + \oint_{R_1} f(z)dz,$$

ahol az utolsó négy tag összege zérus. Ezek szerint

$$ \oint_{G_1} f(z)dz + \oint_{-G_2} f(z)dz = 0,$$

ahonnan a 7.3 Tétel alapján állításunk következik!
A most kimondott 8.3 Tétel és bizonyítása közvetlenül kiterjeszthető arra az esetre, ha a G egyszerű zárt görbe belsejében több egyszerű zárt görbe G_1, G_2, \ldots, G_n van oly módon, hogy az általuk határolt zárt pont-halmazoknak páronként nincs közös pontja és az $f(z)$ analitikus mindegyik görbén és azon a többszörösen összfüggő tartományon, amely ugy jön létre, hogy G belsejéből elhagyjuk a G_k görbék belsejét ($u = 1, 2, \ldots, n$). Ebben az esetben

$$\int_G f(z)dz = \int_{G_1} f(z)dz + \int_{G_2} f(z)dz + \ldots + \int_{G_n} f(z)dz$$

feltéve, hogy mindegyik görbén azonos befutási értelemben integrálunk.

8.1 Definíció. Ha a T tartományon analitikus $f(z)$ függvényhez található egy olyan $F(z)$ ugyanezen a tartományon analitikus függvény, amelyre igaz, hogy

$$F'(z) = f(z), \ z \in T,$$

ugy ezt az $F(z)$ függvényt a primitív függvényének nevezzük.
8.4 Tétel. Az egyszeresen összefüggő T tartományon analitikus f(z) függvényeik mindig van primitív függvénye.

Bizonyítás. Tekintsük az \[\int_{z_0}^{z} f(\zeta) \, d\zeta \] alakú integrált, ahol \(z_0 \) a T tartomány egy rögzített, \(z \) pedig egy változó pontja. Ez a 8.2 Tétel értelmében definiál egy \(F(z) \) függvényt, amelyről kimutatjuk, hogy minden \(z \in T \) -re differenciálható és deriválja \(f(z) \). Állitsuk elő \(F \) differenciálhatósának és a feltételezett differenciálhatóságnak a különbségét

\[
\frac{F(z+h)-F(z)}{h} - f(z) = \frac{1}{h} \int_{z}^{z+h} \left[f(\zeta) - f(z) \right] \, d\zeta ,
\]

innen a 7.5 Tétel felhasználásával

\[
\left| \frac{F(z+h)-F(z)}{h} - f(z) \right| = \frac{1}{\left| h \right|} \left| \int_{z}^{z+h} \left[f(\zeta) - f(z) \right] \, d\zeta \right| \leq \frac{1}{\left| h \right|} \cdot \left| h \right| \cdot \max_{\zeta \in [z, z+h]} \left| f(\zeta) - f(z) \right|
\]

Kihasználva, hogy a differenciálható \(f(z) \) függvény folytonos és ezért a jobb oldal zérushoz tart, midőn \(h \to 0 \), kapjuk:

\[
\lim_{h \to 0} \frac{F(z+h)-F(z)}{h} = f(z) .
\]

8.5 Tétel. Legyen \(f(z) \) analitikus egy \(T \) tartomány minden \(z_0 \) -tól különböző pontjában, és a \(z_0 \) -nak létezzen egy olyan környezete, amelyben a függvény korlátos; ekkor minden olyan egyszerű, zárt, rektifikálható és \(z_0 \) -on át nem haladó \(G \) görbére, amely belsejével együtt \(T \) -ben fekszik,

\[
\oint_{G} f(z) \, dz = 0 .
\]
Bizonyítás. A 8.3 Tételből következik, hogy \(\oint_{k_r} f(z)dz = \oint_{G} f(z)dz \), ahol

\(k_r \) egy \(z_o \) középpontu \(G \) belsejébe eső, \(r \) sugarú kör. Ez az egyenlőség

\(r \)-től függetlenül igaz feltéve, hogy \(r \) egy pozitív korlátánál kisebb. Legyen \(\mathcal{E} > 0 \) tetszőlegesen adott. A 7.4 Tétel felhasználásával

\[
\left| \oint_{G} f(z)dz \right| = \left| \oint_{k_r} f(z)dz \right| \leq 2 \pi \max \left| f(z) \right| < \mathcal{E} ,
\]

ha \(r \) elég kicsi, mert \(\left| f(z) \right| \) a \(z_o \) pont környezetében korlátos.

8.6 Tétel. (Cauchy-féle integrálformula.) Legyen \(f(z) \) analitikus a \(T \) tartományban, akkor minden olyan pozitív értékelemben befutott egyszervű zárt \(G \) görbére, amely belsejével együtt benné van \(T \)-ben és amely a \(z \) pontot belsejében tartalmazza igaz, hogy

\[
f(z) = \frac{1}{2 \pi i} \oint_{G} \frac{f(\xi)}{\xi - z} \, d\xi
\]

Bizonyítás. Igaz, hogy

\[
\oint_{G} \frac{f(\xi)}{\xi - z} \, d\xi = \oint_{G} \frac{f(\xi)}{\xi - z} \, d\xi + \oint_{T} \frac{f(z)}{\xi - z} \, d\xi
\]

A jobb oldal első tagja a 8.5 Tétel értelmében 0, hiszen \(g(\xi) = \frac{f(\xi) - f(z)}{\xi - z} \)

\(\xi = z \) hely kivételével \(T \)-ben mindenütt analitikus és \(e \) hely környezetében korlátos, hiszen \(g(\xi) \rightarrow f'(z) \) ha \(\xi \rightarrow z \) -hez. Tehát

\[
\oint_{G} \frac{f(\xi)}{\xi - z} \, d\xi = f(z) \oint_{G} \frac{d\xi}{\xi - z}
\]

Legyen \(k \) egy \(z \) középpontú elég kis sugarú körvonat. A 8.3 Tételt és a

7.2 Példa eredményét fölhasználva

\[
\oint_{G} \frac{d\xi}{\xi - z} = \oint_{k} \frac{d\xi}{\xi - z} = 2 \pi i
\]

ahonnan állításunk adódik!
9. Komplex hatványsorok

A valós függvény sorozatok és függvény sorozatok analógiájára definiálhatók a komplex függvény sorozatok és függvény sorozatok (vö. IV. Kötet, Második fejezet), ill. ezek konvergenciájának (IV. Kötet, 4.1 Definíció) abszolut és egyenletes konvergenciájának (IV. kötet, 4.2 Definíció) fogalma.

9.1 Tétel. Véges sok egyenletesen konvergens és közös konvergenciatar-tománnal rendelkező komplex függvény sor összege is egyen- letesen konvergens és az összegsor összefüggvénye a meg-felelő összefüggvények összegével egyenlő.

Bizonyítás. A IV. Kötet, 4.2 Tétel bizonyításával analóg módon az olvasóra bízzuk.!

9.2 Tétel. Folytonos komplex függvények egyenletesen konvergens sorozatának határfüggvénye is folytonos.

Bizonyítás. A IV. Kötet, 4.3 Tétel bizonyításával analóg módon történik.!

9.3 Tétel. Folytonos komplex függvények egyenletesen konvergens sorának összefüggvénye is folytonos.

Bizonyítás. A IV. Kötet, 4.4 Tétel bizonyításával analóg módon történik.!

9.4 Tétel. (Weierstrass-kritérium.) Ha \(|f_n(z)| \leq c_n, z \in T, \) és a

\[
\sum_{n=0}^{\infty} c_n \]

pozitív tagú, numerikus sor konvergens, akkor a

\[
\sum_{n=0}^{\infty} f_n(z) \]

a \(T \) tartományon abszolút és egyenletesen konvergens.

Bizonyítás. A IV. Kötet, 4.5 Tétel bizonyításával analóg módon történik.!

9.5 Tétel. Egyenletesen konvergens és egy tartományon analitikus függvény sor tagonkénti integrálásával nyert

\[
\sum_{n=0}^{\infty} \int_{a}^{z} f_n(z)dz
\]
alaku függvénysor is egyenletesen konvergens és összegfüggvénye az eredeti összegfüggvény \[\int_a^z \left(\sum_{n=0}^{\infty} f_n(z) \right) \, dz \] integráljával egyenlő.

Bizonyítás. A IV. Kötet, 5.4 Tétel bizonyításával analóg módon történik.

Az analiticitást ki kell kötnünk, ahhoz, hogy az \[\int_a^z f_n(z) \, dz \] integrálok az utódlíp függetlenül létezzenek.

9.6 Tétel. Ha az \[f_n(z) \] függvények analitikusak egy tartományon, a belőlük képzett \[\sum_{n=0}^{\infty} f_n(z) \] függvénysor konvergens, és a deriváltjaikból képzett \[\sum_{n=0}^{\infty} f'(z) \] függvénysor egyenletesen konvergens, ugy az eredeti sor összegfüggvénye is analitikus és deriváltja \[\sum_{n=0}^{\infty} f'(z) \].

Bizonyítás. A IV. Kötet, 5.2 Tétel bizonyításával analóg módon történik.

9.1 Definíció. A \[\sum_{n=0}^{\infty} c_n z^n \] alaku függvénysort, ahol \[c_n \] komplex konstanst \[(n = 0, 1, 2, \ldots) \], komplex hatványsornak nevezzük.

\[A \sum_{n=0}^{\infty} d_n (z - z_0)^n \] alaku függvénysort, ahol \[d_n \] és \[z_0 \] komplex konstansok \[(n = 0, 1, 2, \ldots) \], tágabb értelemben vett komplex hatványsornak nevezzük.

9.7 Segédtétel. Ha egy hatványsor egy \[z_0 \neq 0 \] helyen konvergens, akkor minden olyan \[z \] helyen abszolút konvergens, amelyre \[|z| < |z_0| \].

Bizonyítás. A IV. Kötet, 6.1 Segédtételének bizonyításával analóg módon történik.

9.8 Segédtétel. Ha egy hatványsor egy \[z_1 \] helyen divergens, akkor minden olyan \[z \] helyen divergens, amelyre \[|z_1| > |z| \].

Bizonyítás. Az előző Segédtétel egyszerű következménye.
9.9 Tétel. Komplex hatványsor konvergenciaturtományára a következő három egymást kizáró, lehetséges eset egyike érvényes:

a) \(z = 0 \) abszolút konvergens, \(z \neq 0 \) esetben divergens; a konvergenciaturtomány egyetlen pont, a \(z \) sik origója;

b) van \(r > 0 \) szám, (az un. konvergenciasugár), hogy \(|z| < r \) esetén abszolút konvergens, \(|z| > r \) esetén divergens; a konvergenciaturtomány a \(z \) sikon az origó köz ép pontu \(r \) sugaru körlemez belseje. A határpontok egy részhalmaza is hozzáértözhet a konvergenciaturtományhoz;

c) minden \(z \)-re abszolút konvergens; a konvergenciaturtomány az egész \(z \) sik.

Az a), ill. c) esetekben azt mondjuk, hogy a konvergenciasugár \(0, \) ill. \(\infty \).

Bizonyítás. A IV. Kötet, 6.3 Tételének bizonyításával analóg módon történik.

9.10. Tétel. A \(\sum_{n=0}^{\infty} d \cdot (z-z_0)^n \) tágabb értelmen vett komplex hatványsor konvergenciaturtománya egy \(z_0 \) középpontu körlemez, melynek sugara az előbbi értelmen \(0 \) ill. \(\infty \) is lehet.

Bizonyítás. A tágabb értelmen vett hatványsor a független változó síkján egy \(z_0 \) síkvektorral történő eltolással származtatható egy komplex hatványsóból.

9.11 Tétel. (Cauchy-Hadamard-tétel.) A \(\sum_{n=0}^{\infty} c \cdot z^n \) hatványsor konvergenciasugara

\[
r = \frac{1}{\lim_{n \to \infty} |c_n|}
\]

Bizonyítás. A IV. Kötet, 6.4 Tételének bizonyításával analóg.

9.12 Tétel. Legyen a hatványsor konvergencia sugara \(r > 0 \), és legyen \(0 < \varphi < r \), akkor a hatványsor az \(|z| < \varphi \) tartományon egyenletesen konvergens.

Bizonyítás. A IV. Kötet, 6.5 Tételének bizonyításával analóg módon történik.
9.13 Tétel. Hatványsor összefüggvénye a konvergenciátartomány minden belső pontjában végzetlen sokszor differenciálható és az n-edik deriváltat \((n = 1, 2, \ldots)\) a hatványsor \(n\)-szeres tagonkénti deriválásával lehet kiszámíthatni.

Bizonyítás. A IV. Kötet, 6.7 Tételének bizonyításával analóg módon történik.

9.14 Tétel. Legyen a hatványsor konvergenciás sugara \(r > 0\), és legyen \(0 < \varrho < r\), akkor a hatványsor az \(|z| < \varrho\) tartományon tagonként integrálható.

Bizonyítás. Az állítás közvetlenül következik a 9.5 és 9.12 Tételből.

9.15 Tétel. Legyen a hatványsor konvergencia sugara \(r > 0\) és összefüggvénye \(f(z)\), akkor a hatványsor \(c_n\) együtthatóira

\[(n=0,1,2,\ldots) \]

így az \(c_n = \frac{f^{(n)}(0)}{n!}\) egyenlőség. Analóg összefüggés érvényes a tágabb értelmenben vett hatványsor összefüggvénye \(g(z)\) és a \(d_n\) együtthatók között

\[
(d_n) = \frac{g(z_o)}{n!}, \quad (n = 0, 1, 2, \ldots).
\]

9.2 Definíció. Legyen az \(f(z)\) függvény a \(z = 0\) helyen, (ill. \(g(z)\) függvény az adott \(z\) helyen) akárhatánsor differenciálható,

akkor a \(\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n\) hatványsor, (illetve a \(\sum_{n=0}^{\infty} \frac{g^{(n)}(z_o)}{n!} (z-z_o)^n\) alakú tágabb értelmenben vett hatványsort) az \(f(z)\) függvény Taylor-sorának (ill. \(g(z)\) függvény tágabb értelmenben vett Taylor-sorának) nevezzük.

9.1 Példa. Az \(f(z) = \frac{1}{1 - z}\) függvény Taylor sora \(\sum_{n=0}^{\infty} z^n\) konvergens az \(|z| < 1\) körön és itt előállítja az \(\frac{1}{1 - z}\) függvényt. Ezen állítás helyessége közvetlenül adódik a 2.2 Példából és a 9.15 Tételből.
9.16 Tétel. Legyen \(f(z) \) egy, a \(z_0 \) középpontú \(r > 0 \) sugarú \(G \) kört
a belsőjében tartalmazó \(T \) tartományon analitikus, akkor
előállítható egy, e körben konvergens, tágabb értelmben vett
hatványsor összegeként.

Bizonyítás. Minden e körön belüli \(z \)-re ígaz a 8.6 Tétel értelmében, hogy

\[
f(z) = \frac{1}{2\pi i} \int_G \frac{f(\xi)}{\xi - z} \, d\xi \tag{9.1}
\]

Egyszerű átalakítással adódik, hogy

\[
\frac{f(\xi)}{\xi - z} = \frac{f(\xi)}{\xi - z_0 + z_0 - z} = \frac{f(\xi)}{\xi - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\xi - z_0}} \tag{9.2}
\]

Figyelembe véve, hogy \(|\xi - z_0| = r \) és \(|z - z_0| < r \) adódik, hogy

\[
\left|\frac{z - z_0}{\xi - z_0}\right| < 1,
\]

így a 9.1 Példa analógiájára érvényes az alábbi sorbefejtés:

\[
f(\xi) = f(\xi) \left[1 + \frac{z - z_0}{\xi - z_0} + \frac{(z - z_0)^2}{(\xi - z_0)^2} + \ldots + \frac{(z - z_0)^n}{(\xi - z_0)^n} + \ldots \right] \tag{9.3}
\]

A (9.1) összefüggés (9.3) figyelembevételével ugy módosul, hogy

\[
f(z) = \frac{1}{2\pi i} \int_G \frac{f(\xi)}{\xi - z} \left[1 + \frac{z - z_0}{\xi - z_0} + \frac{(z - z_0)^2}{(\xi - z_0)^2} + \ldots \\
\ldots + \frac{(z - z_0)^n}{(\xi - z_0)^n} + \ldots \right] d\xi \tag{9.4}
\]

(9.4) jobb oldalát a 9.14 Tétel értelmében tagonként integrálva adódik,

hogy

- 59 -
\[f(z) = \frac{1}{2\pi i} \oint_{G} \frac{f(\xi)}{\xi - z_o} d\xi + \left[\frac{1}{2\pi i} \oint_{G} \frac{f(\xi)}{(\xi - z_o)^2} d\xi \right] (z-z_o) + \]
\[+ \left[\frac{1}{2\pi i} \oint_{G} \frac{f(\xi)}{(\xi - z_o)^3} d\xi \right] (z-z_o)^2 + \ldots \]
\[\ldots + \left[\frac{1}{2\pi i} \oint_{G} \frac{f(\xi)}{(\xi - z_o)^{n+1}} d\xi \right] (z-z_o)^n + \ldots. \]

Vagyis
\[f(z) = \sum_{k=0}^{\infty} d_k (z - z_o)^k, \text{ ha } |z - z_o| < r, \]

ahol
\[d_0 = \frac{1}{2\pi i} \oint_{G} \frac{f(\xi)}{\xi - z_o} d\xi = f(z_o) \]

és
\[d_k = \frac{1}{2\pi i} \oint_{G} \frac{f(\xi)}{(\xi - z_o)^{k+1}} d\xi, \quad (k=1, 2, \ldots).! \]

9.17 Tétel. (Általánosított Cauchy-féle integrálképlet.) Ha az f(z) függvény egy a z_o-t tartalmazó T tartományon analitikus (és L egy a belsejével együtt a tartományba eső és z_o-t körülvevő egyszerű zárt görbe), akkor a z_o helyen akárhányszor differenciálható és igaz, hogy
\[f^{(k)}(z_o) = \frac{k!}{2\pi i} \oint_{L} \frac{f(\xi)}{(\xi - z_o)^{k+1}} d\xi \]
\[(k=0, 1, 2, \ldots) \]

Bizonyítás. Az állítás közvetlenül következik a 8.3, a 9.13, a 9.15 és a 9.16 Tételből.!
9.2 Példa. A 6. pontban definiált e^z, $\cos z$ és $\sin z$ függvények Taylor sora, az egész számokon konvergens és előállítja minden z helyen a sort generáló függvényt:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!};$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!};$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!};$$

10. Szinguláris helyek osztályozása

10.1 Definíció. Ha $f(z)$ a z_0 hely egy környezetében z_0 kivételével mindenütt differenciálható, akkor ezt a z_0-t izolált szinguláris helynek nevezzük. Az izolált szinguláris helyekre az alábbi három egymást kizáró, lehetséges eset egyike érvényes:

a) a szingularitás megszüntethető, azaz a z_0 helyhez ugy rendelhető hozzá w_0 függvényérték (akár az értelmezési tartomány z_0 ponttal történő bővítése utján, akár a z_0-hoz eredetileg hozzárendelt függvényérték w_0-ra történő változtatásával), hogy az igy módosított függvény a z_0 helyen analitikus lesz;

b) a szingularis hely pólus, ha ott a szingularitás nem szüntethető meg, de van pozitív egész k, hogy a $g(z) = (z-z_0)^k f(z)$, $z \neq z_0$ függvények már megszüntethető a szingularitása, egy alkalmas $w_0 = g(z_0) \neq 0$ függvényérték hozzárendelésével. A fenti tulajdonsággal rendelkező k pozitív egész számnak nevezzük a pólus rendjének;
c) minden olyan z_0 szinguláris helyet, amely sem az a)
sem a b) osztályba nem sorolható, lényeges szinguláris
helynek nevezünk.

10.1 Példa. Az $f(z) = \frac{\sin z}{z}$, $z \neq 0$ függvénynek a 0 helyen megszűntet-
hető szakadása van, mert az $f(0) = 1$ hozzárendeléssel a függvény az
egész számskón analíttikussá lesz.

10.2 Példa. Az $\frac{1}{(z-1)^3}$ függvénynek a $z = 1$ helyen harmadrendű pólusa
van.

10.3 Példa. Az e^z függvénynek $z_0 = 0$ lényeges szinguláris helye.

10.1 Tétel. Legyen az $f(z)$ függvény analíttikus a z_0 pont körüli
(k_1', k_2') környűtőben, $(k_1, k_2) = \{ z : r < |z - z_0| < R \}$,
ahol r a k_1 kör, R pedig a k_2 kör sugara, akkor e kör-
nyűtő tetszőleges z pontjára érvényes az

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

alakú un. Laurent-féle sorfejtés, ahol az együtthatókat az

$$a_n = \frac{1}{2\pi i} \oint_G \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$$

$(n=0, \pm 1, \pm 2, \ldots)$

Integrálképletek szolgáltatják; az integrálképletekben szerep-
lő G a környűtőben haladó tetszőleges egyszerű zárt görbe,
amely a z_0 pontot pozitív értelemben megkerüli.

Ha a k_1 kör a z_0 pontra zsigorodik ($r = 0$), akkor a z_0
szinguláris hely körüli Laurent sort kapjuk; ezt a speciális
esetet alkalmazzuk leggyakrabban.

Bizonyítás. Legyen a k_1, ill. a k_2 ugyancsak z_0 középpontú r', ill. R'
sugarú kör olyan, hogy az általuk jellemzett (k_1', k_2') gyűrűtartomány

- 62 -
benne legyen a \((k_1', k_2')\) körgyűrűben és ugyancsak tartalmazza a \(z\) pontot, azaz \(r < r' < |z - z_o| < R' < R\). Jelölje \(C\) a \((k_1', k_2')\) körgyűrű fölmeteszése utján előálló egyszeresen összefüggő tartomány (lásd 10.1 ábra)

![Diagram](image)

10.1 ábra

határoló görbékét, vagyis \(C\) a megfelelően irányított \(k_1'\) és \(k_2'\) körök ből, valamint a kétféleképpen irányított metszőszakaszból áll. Mivel az \(f\) függvény a \(C\) által határolt tartományban és magán \(C\) -n is analitikus, a Cauchy féle integrálformula (8.6 Tétel) értelmében

\[
f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(\xi)}{\xi - z} \, d\xi =
\]

\[
= \frac{1}{2 \pi i} \oint_{k_2'} \frac{f(\xi)}{\xi - z} \, d\xi - \frac{1}{2 \pi i} \oint_{k_1'} \frac{f(\xi)}{\xi - z} \, d\xi,
\]

(10.1)
ahol figyelembe vettük azt is, hogy mint \(C \) része a \(k'_1 \) kör negatív irányítású. Vezessük be az

\[
f_2(z) = \frac{1}{2\pi i} \oint_{k'_2} \frac{f(\xi)}{\xi - z} \, d\xi
\]

és az

\[
f_1(z) = -\frac{1}{2\pi i} \oint_{k'_1} \frac{f(\xi)}{\xi - z} \, d\xi
\]

(10.2)

jelöléseket. Az \(f_1(z) \) és az \(f_2(z) \) függvényt sorba fejtjük. Az \(f_2(z) \) függvény sorba fejtésénél lényegében megismételhetjük a 9.16 Tétel bizonyításánál alkalmazott módszert, hiszen

\[
\frac{f(\xi)}{\xi - z} = \frac{f(\xi)}{\xi - z_0 - (z - z_0)} = \frac{f(\xi)}{\xi - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\xi - z_0}}
\]

ahol \(|z - z_0| < R' \), mert \(z \) benne van a \((k'_1, k'_2)\) körgyűrűben, és

\[
|\xi - z_0| = R'
\]

tehát

\[
\left| \frac{z - z_0}{\xi - z_0} \right| < 1.
\]

Vagyis

\[
f_2(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad z \in (k'_1, k'_2),
\]

ahol

\[
a_n = \frac{1}{2\pi i} \oint_{k'_2} \frac{f(\xi)}{(\xi - z_0)^{n+1}} \, d\xi
\]

(10.3)

Ez az \(a_n \) együttható azonban most nem szükségszerűen egyenlő

\[
f_2^{(n)}(z_0)
\]

\[
\frac{n!}{n!}\text{ -sal, mint a Taylor-sor esetén, hiszen a } z_0 \text{ középpontban most semmit sem követeltünk meg a függvénytől.}
\]

- 64 -
Az $f_1(z)$ függvény sorba fejtése érdekében tekintsük a következő átalakításokat:

$$
- \frac{f(\xi)}{\xi - z} = \frac{f(\xi)}{z - z_0} \cdot \frac{1}{1 - \frac{\xi - z_0}{z - z_0}} \cdot (10.4)
$$

Ha ξ a k_1' kör változó kerületi pontja, z_0 a kör középpontja és z a (k_1', k_2') körgyűrű tetszőleges belső pontja, akkor $|\xi - z_0| = r' < |z - z_0|$, vagyis $\left|\frac{\xi - z_0}{z - z_0}\right| < 1$, amiből következik az alábbi geometriai sorba fejtés

$$
- \frac{f(\xi)}{\xi - z} = \frac{f(\xi)}{z - z_0} \cdot \frac{1}{1 - \frac{\xi - z_0}{z - z_0}} = f(\xi) \sum_{n=0}^{\infty} \left(\frac{\xi - z_0}{z - z_0}\right)^n (10.5)
$$

Tekintettel arra, hogy a (10.5) jobb oldalán levő, geometriai sor a k_1' kör egy élével kis környezetében egyenletesen konvergens, a 9.5 Tétel értelmében igaz, hogy

$$
- \oint_{k_1'} \frac{f(\xi)}{\xi - z} \, d\xi = \sum_{n=0}^{\infty} \left[\oint_{k_1'} \frac{f(\xi)}{\xi - z_0} \, d\xi \right] \left(\frac{\xi - z_0}{z - z_0}\right)^n (z - z_0)^{-(n+1)}
$$

Az $m=n+1$ indexcserével

$$
f_1(z) = -\frac{1}{2\pi i} \oint_{k_1'} \frac{f(\xi)}{\xi - z} \, d\xi = \sum_{m=1}^{\infty} a_m (z - z_0)^{-m},
$$

ahol

$$
a_m = \frac{1}{2\pi i} \oint_{k_1'} \frac{f(\xi)}{(\xi - z_0)^{m+1}} \, d\xi \quad (10.6)
$$

m = 1, 2, ...

A (10.3) és (10.6) formulákban az integráljelk alatt álló függvények a teljes (k_1', k_2') körgyűrűben analitikusak és így az együtthatók nem változnak,
ha az integrációs utat a \(G \) görbére módosítjuk. Ezzel az (10.1) és (10.2) összefüggéseket is figyelembe véve, bebizonyítottuk a 10.2 Tételt.

10.2 Tétel. Az \(f(z) \) analitikus függvény \(z_0 \) izolált szinguláris helye akkor és csak akkor megszüntethető szingularitás, ha a \(z_0 \) hely körüli Laurent sor valamennyi negatív indexű együtt-hatója zérus.

Bizonyítás. A feltétel elégséges, mert az \(f(z_0) = a_o \) hozzárendeléssel a szingularitás megszűnt, így a függvény a \(z_0 \) helyen is analitikus. A feltétel szükséges mivel egy \(z_0 \) körüli eléggé kis sugarú k körről

\[
a_{-m} = \frac{1}{2\pi i} \oint_k \frac{f(\xi)}{(\xi-z_0)^{-m+1}} \, d\xi = 0, \quad (m=1,2,\ldots)
\]

a 8.5 Tétel értelmében.

10.3 Tétel. Az \(f(z) \) analitikus függvény \(z_0 \) izolált szinguláris helye akkor és csak akkor k-ad rendű pólus, ha a \(z_0 \) hely körüli Laurent sorban \(a_{-k} \neq 0 \) és \(a_{-m} = 0 \), ha \(m > k \).

Bizonyítás. A feltétel elégséges, mert ha

\[
f(z) = \frac{a_{-k}}{(z-z_0)^k} + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + \sum_{n=0}^{\infty} a_n (z-z_0)^n
\]
alakú, akkor a \(g(z) = (z-z_0)^k f(z) \), \(z \neq z_0 \) függvénynek a \(g(z_0) = a_{-k} \) hozzárendeléssel megszüntethető a szingularitása, és \(k_1 \) a legkisebb természetes szám, amelyre ez az állítás igaz.

A feltétel szükséges is, mert ha \(z_0 \) k-ad rendű pólus, akkor a

\[
limit_{z \to z_0} \frac{(z-z_0)^k}{f(z)} \text{ határérték létezik és nem zérus. Ha } f \text{ Laurent-során}
\]
ban \(\frac{a_{-m}}{(z-z_0)^m} \), \(m > k \), alakú tagok is előfordulnak, akkor e határérték nem létezhetne. Ha viszont fennállna \(a_{-k} = 0 \) is, akkor e határérték zérus lenne.
10.4 Tétel. Az \(f(z) \) analitikus függvény \(z_0 \) izolált szinguláris helye akkor és csak akkor lényeges szinguláris hely, ha a \(z_0 \) körfüggő Laurent sorok végtegen sok zérustól különböző negatív indexű együtthatója van.

Bizonyítás. Az állítás közvetlen következménye a 10.1 Definíciónak és a 10.3 Tételeknek.

10.2 Definíció. Legyen \(f(z) \) -nek \(z_0 \) izolált szinguláris helye. A \(z_0 \) körfüggő Laurent sor \(a_{-1} \) együtthatóját (vagyis az

\[
\frac{1}{2\pi i} \oint_{G} f(z)dz \text{ integrált, ahol } G \text{ egy olyan egyszerű pozitív értelmen befutott zárt görbe, amely belsejével együtt az egyetlen } z_0 \text{ pontot kivéve hozzátartozik } f(z)
\]

analitikáit tartományához) az \(f(z) \) függvény \(z_0 \)-hoz tartozó reziduumának nevezzük.

\[
\text{Res}(z_0) = \text{Res}[f(z); z_0] = a_{-1} = \frac{1}{2\pi i} \oint_{G} f(z)dz
\]

10.5 Tétel. (Reziduum-tétel.) Legyen az \(f(z) \) függvény analitikus a pozitív irányítást segítségével egyszerű zárt \(L \) görbén és belsejében, kivéve a véges sok \(z_0, z_1, \ldots, z_s \) izolált szinguláris pontot, ekkor igaz, hogy

\[
\oint_{L} f(z)dz = 2\pi i \left(\text{Res}(z_0) + \text{Res}(z_1) + \ldots + \text{Res}(z_s) \right)
\]

Bizonyítás. Vegyük körül a szinguláris helyeket elég kis \(k_0, k_1, \ldots, k_s \) körökkel oly módon, hogy e körök mindegyike \(L \) belsejében halad és páronként nincs közös pontjuk. A 8.3 Tételt követő megjegyzésből következik, hogy

\[
\oint_{L} f(z)dz = \oint_{k_0} f(z)dz + \oint_{k_1} f(z)dz + \ldots + \oint_{k_s} f(z)dz
\]

Tekintettel arra, hogy a \(k_j \) kör belsejében \(z_j \) az egyetlen izolált szinguláris hely
\[\oint_{C_j} f(z) \, dz = 2\pi \text{i } \text{Res}(z_j), \quad (j=0,1,2,\ldots,s) \]

amivel a reziduum tételt bebizonyítottuk.

A reziduum tételt eredményeképp alkalmazhatjuk határozott integrálokat kiszámításában, főként olyankor amikor egyszerűen tudjuk kiszámítani az egyes szinguláris helyekhez tartozó reziduumokat. Igé pl. érvényes a

10.6 Tétel. Legyen \(f(z) = \frac{h(z)}{g(z)} \), ahol a \(h \) és \(g \) függvények \(z_0 \) környezetében analitikusak és teljesül a \(g(z_0) = 0 \) és \(g'(z_0) \neq 0 \) egyenlőség:

\[\text{Res} \left[f(z); z_0 \right] = \text{Res} \left[\frac{h(z)}{g(z)}; z_0 \right] = \frac{h(z_0)}{g'(z_0)} \]

Bizonyítás. A

\[(z-z_0)f(z) = (z-z_0) \frac{h(z)}{g(z)} = (z-z_0) \frac{h(z)}{g(z)-g(z_0)} = \frac{h(z)}{z-z_0} \]

azonosságból látszik, hogy a \(\varphi(z) = (z-z_0)f(z) \) függvények a \(z_0 \) helyen megszüntethető szingularitása van; a \(\varphi(z_0) = \frac{h(z_0)}{g'(z_0)} \) hozzárendeléssel a \(\varphi \) függvény a \(z_0 \) helyen analitikus vagyis igaz, hogy

\[\varphi(z) = \varphi(z_0) + \frac{\varphi'(z_0)}{1!} (z-z_0) + \frac{\varphi''(z_0)}{2!} (z-z_0)^2 + \ldots \]

\[+ \ldots \frac{\varphi^{(n)}(z_0)}{n!} (z-z_0)^n + \ldots . \]

Figyelembe véve, hogy \(f(z) = \frac{\varphi(z)}{z-z_0} \), adódik \(f(z) \) alábbi \(z_0 \) körüli

Laurent sora

- 68 -
\[f(z) = \frac{\varphi(z_0)}{z - z_0} + \varphi'(z_0) + \frac{\varphi''(z_0)}{2!} (z - z_0) + ... + \frac{\varphi^{(n)}(z_0)}{n!} (z - z_0)^{n-1} + ... \]

ahonnan közvetlenül leolvasható, hogy

\[\text{Res}[f(z), z_0] = \varphi(z_0) = \frac{h(z_0)}{g'(z_0)}. \]
IRODALOMJEGYZÉK

Tárgymutató

algebra alapétele 24
általánosított Cauchy-féle integrálképlet 60
analitikus függvény 31, 49

belső pont 9
Cauchy-féle integrálformula 54
Cauchy-Hadamard-tétel 57
Cauchy-Riemann-féle parciális differenciálegyenletek 29
Cauchy-tétel 49
differenciálhányados 27
egyszeresen összefüggő tartomány 10
Euler-féle reláció 39
exponenciális függvény 38

harmonikus függvény 31
harmonikus társ 32
határérték 11, 18
határpont 9
hatvány sor 55
— konvergencia sugara 57
integrálhatóság 43
invertálás egységkörre 36
izolált szinguláris hely 61

kicsiben aránytartó leképezés 37
komplementer halmaz 9.

komplex függvény 10
— differenciálhatósága 27
— folytonossága 21
— kanonikus alakja 17
— vonalintegrálja 42
komplex függvénytani főtétele 49
komplex potenciál 32

- 72 -
komplex számsorozat 10
— — konjugált sorozata 13
— — konvergenciája 12
konformis leképezés 34, 37
korlátos 7, 11
környezet 8
külső pont 9

Laplace-féle parciális differenciálegyenlet 31
Laurent-sor 61
lényeges szinguláris hely 62
lineáris törtfüggvény 37
logaritmus függvény 40

megszüntethető szingulárítás 61

nyílt halmaz 9

pólus 61
pólus rendje 61
primitív függvény 52

reziduum 67
reziduum tétele 67

szinguláris hely 61
szögtartó leképezés 37

tartomány 10
Taylor sor 58
torlódási pont 8

végteken komplex számsor 15
— — — — abszolút konvergenciája 16
— — — — feltételes konvergenciája 17
Weierstrass tétele 9

zárt halmaz 9